Math, asked by sahasraalia90, 11 months ago

the area of rectangular park is same as the area of sqaure park.if the length of rectangular park is 40m and side of sqaure park is 80m. find the length of rectangular park.​

Answers

Answered by Anonymous
25

ɴsʀ :

Reference of Image is shown in diagram

\setlength{\unitlength}{1.5cm}\begin{picture}(20,2)\thicklines\put(7.4,2){\mathsf{\large{80 m}}}\put(9.2,0.7){\matsf{\large{}}}\put(8,1){\line(1,0){3}}\put(8,1){\line(0,2){2}}\put(11,1){\line(0,3){2}}\put(8,3){\line(3,0){3}}\put(14.1,1.6){\mathsf{\large{}}}\put(12.7,0.7){\matsf{\large{50 cm}}}\put(12,1){\line(1,0){2}}\put(12,1){\line(0,2){1.5}}\put(14,1){\line(0,3){1.5}}\put(12,2.5){\line(3,0){2}}\put(9,1.8){\Large\rm Rectangle }\put(12.3,1.6){\rm Square}\end{picture}

 \rule{170}2

\large\underline{\textsf{Area \: of \: Rectangular \: park:}}

\normalsize\bigstar\:{\boxed{\sf{Area \: of \: rectangle = Length \times\ Breadth}}}

\normalsize\dashrightarrow\quad\sf\ Area_{rectangle} = Length \times\ 40

\normalsize\dashrightarrow\quad{\underline{\boxed{\sf{Area_{rectangle} = (Length \times\ 40)\:m^2}}}}

\large\underline{\textsf{Area \: of \: Square \: park:}}

\normalsize\bigstar\:{\boxed{\sf{Area \: of \: square = (side)^2}}}

\normalsize\twoheadrightarrow\quad\sf\ Area_{square} = 80 \times\ 80

\normalsize\twoheadrightarrow\quad\sf\ Area_{square} = 6400

\normalsize\twoheadrightarrow\quad{\underline{\boxed{\sf{Area_{square} = 6400 \: m^2}}}}

 \rule{100}1

\large\underline{\textsf{It  \: is \: given \: that:}}

\normalsize\bigstar\:{\boxed{\sf{Area \: of \: square \: park = Area \: of \: rectangular \: park }}}

\normalsize\ : \implies\quad\sf\ Area_{square} = Area_{square}

\normalsize\ : \implies\quad\sf\ 6400 = (Length \times\ 40)

\normalsize\ : \implies\quad\sf\frac{\cancel{6400}}{\cancel{40}} = Length

\normalsize\ : \implies\quad\sf\ Length = 160

\normalsize\ : \implies\quad{\underline{\boxed{\sf \red{Length = 160 \: m}}}}

\therefore\:\underline{\textsf{Hence, \: the \: length \: of \: rectangular \: park \: is}{\textbf{\: 160m}}}

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
1

\huge\sf\pink{Answer}

☞ Your Answer = 160 m

\rule{110}1

\huge\sf\blue{Given}

➝ Area of a square = Area of a square

➝ Breadth of the rectangular park = 40 m

➝ Side of the square = 80 m

\rule{110}1

\huge\sf\gray{To \:Find}

✭ The length of the rectangle?

\rule{110}1

\huge\sf\purple{Steps}

\large\underline{\textsf{Area\:of\:Rectangular\:park:}}

\normalsize\bullet\underline{\boxed{\sf{Area \: of \: rectangle = Length \times\ Breadth}}}

\normalsize\dashrightarrow\quad\sf\ Area_{rectangle} = Length \times\ 40

\normalsize\dashrightarrow\quad{\underline{\boxed{\sf{Area_{rectangle} = (Length \times\ 40)\:m^2}}}}

\large\underline{\textsf{Area \: of \: Square \: park:}}

\normalsize\bullet\underline\:{\boxed{\sf{Area \: of \: square = (side)^2}}}

\normalsize\twoheadrightarrow\quad\sf\ Area_{square} = 80 \times\ 80

\normalsize\twoheadrightarrow\quad\sf\ Area_{square} = 6400 m

\large\underline{\textsf{Given \: that:}}

\normalsize\bullet\underline\:{\boxed{\sf{Area \: of \: square \: park = Area \: of \: rectangular \: park }}}

\normalsize \dashrightarrow\quad\sf\ Area_{square} = Area_{square}

\normalsize\dashrightarrow\quad\sf\ 6400 = (Length \times\ 40)

\normalsize\dashrightarrow\quad\sf\dfrac{{6400}}{{40}} = Length

\normalsize \dashrightarrow\quad\sf\ Length = 160

\normalsize  \dashrightarrow\quad{\underline{\boxed{\sf \red{Length = 160 \: m}}}}

\rule{170}3

Similar questions