Math, asked by zdgaming156, 6 months ago

The area of rhombus is 120cm² and one of the diagonal is 8cm.Find the other diagonal.
ASN I Do no​

Answers

Answered by ajay8949
0

 \huge\boxed{\tt{ \pink{A} \green{N} \red{S} \blue{W} \purple{E} \orange{R}}}

Area of Rhombus = 120cm²

first daigonal = 8cm

{ \tt \red{area \: of \: rhombus =  \frac{1}{2}  \times  \binom{d}{ \:  \: 1}  \times  \binom{d}{ \:  \: 2} \: }}

  \tt {\:  \: =  >   \:  \: 120 = \frac{1}{ \cancel{2} } \times \cancel {8} \times  \binom{d}{ \:  \: 2} }

   \tt{  \:  \: =  > \:  \:  \:  \:  \:  \:  \: \binom{d}{ \:  \:  \: 2}  =  \frac{ \cancel{120}}{ \cancel{4} }}

 \:  \:  =  >  \:  \:  \:  \:  \:  \:  \:  \tt {\binom{d}{ \:  \:  \: 2}  = 30 \: cm}

Hence, the diagonal is 30 cm.

 \sf\orange{please\:mark\:as\:brainliest............}

Answered by tusharraj77123
2

Answer:

Length of other diagonal = 30 cm

Step-by-step explanation:

Given :

Area of the Rhombus = 120 cm²

One diagonal = 8 cm

To find :

The length of other diagonal

Taken :

To find the length of other diagonal use the formula of the area of the rhombus -:

\boxed{\sf{A=\dfrac{1}{2}\:\times\:d_{1}\:\times\:d_{2}}}

Where,

A = Area of the Rhombus

\sf{d_{1}} = One diagonal

\sf{d_{2}} = Other diagonal

Solution :

\leadsto\sf{{120cm}^{2}=\dfrac{1}{\cancel{2}}\times\cancel{8}cm\times\:d_{2}}

\leadsto\sf{{120cm}^{2}=4cm\times\:d_{2}}

\leadsto\sf{\dfrac{\cancel{{120cm}^{2}}}{\cancel{4cm}}=d_{2}}

\leadsto\sf{30cm=d_{2}}

So , the length of other diagonal is 30 cm .

Similar questions