Math, asked by Manank22, 2 months ago

The area of the circle whose centre is (0, – 4) and passes through the point (–1, 5), is
No spam

Answers

Answered by mohammadfurquanjawed
21

Answer:

r =  \sqrt{( {- 1 - 0})^{2} + ( {5 + 4})^{2} } \\  \\  \:  =  \sqrt{1 + 81}  =  \sqrt{82}  \\  \\ area \: of \: circle = \pi {r}^{2}  \\  \\  \:  \:  \:  \:  \frac{22}{7}  \times 82 =  \frac{1804}{7}  = 257.7sq.unit

Answered by TrustedAnswerer19
82

Answer :

 \green { \boxed{ \sf \: \: Area  \: of \: the \: circle \:  \Delta = 82\pi}}

Step-by-step explanation:

Given,

  • Center of a circle = (0,-4)
  • and it passes through the point (-1,5)

To find :

  • Area of the circle.

Solution :

we know that

 \sf \: area \: of \: a \: circle \:  \Delta  = \pi {r}^{2}

where r = radius of the circle.

So at first we have to find the radius(r) of the circle.

 \bf \: here \\  \small{\small{  \sf \: radius \:  \: r = distance \: between \: center(0, - 4) \: and \: the \: point( - 1,5)}} \\  \sf \implies \: r =  \sqrt{ { \{0 - ( - 1)} \}^{2} +  {( - 4 - 5})^{2}  }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \sqrt{ {(0 + 1)}^{2}  +  {(  - 9)}^{2} }  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \sqrt{1 + 81}  \\   \:   \:  \:  \therefore \:  \:  \sf \: r\:  \: =  \sqrt{82}  \: unit \\  \\  \bf \: now \: area \:  \:  \:  \Delta = \pi {r}^{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \pi {( \sqrt{82} })^{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =   82\pi \\  \\  \green{ \sf \: so \: area \: of \: the \: circle \:  \Delta = 82\pi}

Attachments:
Similar questions