Math, asked by mks110802gmailcom, 1 year ago

The area of the quadrilateral whose sides measure 9 cm, 40 cm, 28 cm and 15 cm and in which the angle between the first two sides is a right angle is

Answers

Answered by Light1729
18
The area of quadrilateral is equal to sum of areas of two triangles in which it's diagonals divide it.

So, area =0.5×40×9+√s(s-a)(s-b)(s-c)

a=√{40²+9²}=41
b=28 and c=15
And s=(41+15+28)/2
Answered by nickunikkip9bq4c
11

AB= 9

BC= 40

CD= 28

DA= 15

 join A and C to form a diagonal AC in quadrilateral ABCD

using pythagorean theorem,

AB ^(2) + BC ^(2) = AC ^(2)

9*9 + 40*40 = AC ^(2)

81 + 1600 = AC ^(2)

1681 = AC^(2)

= AC

41 = AC


now, using herons formula, u can find the area of triangle ABC an d triangle ADC.


in triangle ABC

=

                                                  = 

                                                  = 

                                                  = 

                                                  = 5*3*2*3*2

                                                  = 5*36

                                                  = 180



in triangle ADC

=

                                                  =

                                                  =

                                                  =

                                                  =2*7*3*3*

                                                  = 14*9

                                                  = 126


area of ABC + area of ADC = area of ABCD

180 + 126 = 306


Read more on Brainly.in - https://brainly.in/question/2574695#readmore

Similar questions