Chemistry, asked by NexusRoar, 5 days ago

The area of the rhombus is 1120 cm2 and the two of its diagonals are in the ratio of 5 : 7 , then find
the length of the longer diagonal.

Answers

Answered by Anonymous
116

Given : The Area of the Rhombus is 1120 cm² and two of its diagonals are in the ratio 5:7

 \\ \\

To Find : Find the Longer diagonal

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN : For finding the Diagonals we need to use the formula that is Area = 1/2 × D¹ × .Let's Solve :

 \\ \\

 \dag Calculating the Ratios :

  •  \sf{ D_1 } = 5y
  •  \sf{ D_2 } = 7y

 \\ \\

 \dag Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Are{\small_{(Rhombus)}} = \dfrac{1}{2} \times D_1 \times D_2 }}}}}

Where :

  •  \sf{ D_1 } = Diagonal 1
  •  \sf{ D_2 } = Diagonal 2

 \\ \\

 \dag Calculating the Value of y :

 {\longmapsto{\qquad{\sf{ Area = \dfrac{1}{2} \times D_1 \times D_2 }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 1120 = \dfrac{1}{2} \times 5y \times 7y }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 1120 \times 2 = 1 \times 5y \times 7y }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 2240 = 1 \times 35y }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 2240 = {35y}^{2} }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \dfrac{2240}{35} = {y}^{2} }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \cancel\dfrac{2240}{35} = {y}^{2} }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 64 = {y}^{2} }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \sqrt{64} = y }}}} \\ \\ \\ \ {\qquad \; \; {\longmapsto{\underline{\boxed{\pmb{\frak{ y = 8 }}}}}}} \; {\red{\bigstar}}

 \\ \\

 \dag Calculating the Diagonals :

  •  \sf{ D_1 } = 5y = 5(8) = 40 cm
  •  \sf{ D_2 } = 7y = 7(8) = 56 cm

 \\ \\

 \therefore \; \; Longer Diagonal of the Rhombus is 56 cm .

 \\ \qquad{\rule{200pt}{2pt}}

Answered by muskanyadav2874
5

Answer:

Here is your answer

I hope it helps you

Attachments:
Similar questions