Math, asked by xXlovelyprincessxX, 3 months ago

The area of the triangle ABC is 72sq. cm and AD= 3cm is the height from A to BC. Find the length of BC​

Answers

Answered by ishaanmaster
0

Answer:

see explanation for answer

Step-by-step explanation:

AD = 3cm

tan 60 = P / B

root 3 = 3 / B

B root 3 = 3

B = 3 / root3

so rationalizing it

B = 3 * root3 / root3* root3

B = 3root3 / 3

cancelling 3 and  3

we get

B = root 3 ( B = DC)

we get ,

BC = BD + DC

BC = root3 + root 3

BC = 2root3

Answered by MrHyper
82

\Huge\rm\orange{answeR:}

{}

\bf{{\underline{Given}}:}

  • \sf{Area~of~∆ABC = 72cm^{2}}
  • \sf{AD = 3cm}

\bf{{\underline{To~find}}:}

  • \sf{The~length~BC}

\bf{{\underline{Solution}}:}

 \sf Area \: of \: a \: triangle =  \dfrac{1}{2}  \times base \times height \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \implies \sf  {72cm}^{2}  =  \frac{1}{2}  \times BC \times AD    \\  \implies \sf  {72cm}^{2} =  \frac{1}{2}  \times BC \times AD  \\  \implies \sf   \frac{1}{2}  \times BC \times 3 =  {72cm}^{2}  \:  \:  \:  \:   \\  \implies \sf \frac{3}{2}  \times BC =  72   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \implies \sf  BC =  \cancel{72} \:   \: ^{24}  \times  \frac{2}{ \cancel{3} \: ^{1} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \implies \sf  BC = 24 \times 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \implies \sf  BC =  \orange{ \underline{ \boxed{ \bf 48cm}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\bf\therefore{{\underline{Required~answer}}:}

  • \sf{BC =  \orange{ \underline{ \boxed{ \bf 48cm}}} }
Similar questions