Math, asked by neerajjainempower123, 7 months ago

the area of the triangle formed by the points A(2,0) , b(6,0) and c(4,6)​

Answers

Answered by yashu2323
1

Answer:

The given points are (2,0), (6,0) and (4,6). = 1/2 [ 6(6 - 2) ], expanding along the 2nd column and taking the positive value. = 12 square units.

Answered by sonisiddharth751
6

Given :-

  • A(2,0)
  • B(6,0)
  • C(4,6)

where,

 \sf \: x_1 = 2  \:  \:  \:  \:  \:  \:  \:  \: x_2 = 6  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: x_3 = 4 \\  \\  \sf \:</p><p>y_1 = 0  \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \: </p><p>y_2 = 0  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: </p><p>y_3 = 6

Formula used :-

 \sf \: area \:  of \:  triangle =  \\  \sf \:  \frac{1}{2}     \bigg[x_1 \big(y_2 -y_3 \big)  + x_2 \big(y_3 - y_2 \big) + x_3 \big(y_1 - y_2 \big)\bigg]

Solution :-

 \sf \: area \:  of \:  triangle =  \\  \sf \:  \dfrac{1}{2}     \bigg[x_1 \big(y_2 -y_3 \big)  + x_2 \big(y_3 - y_2 \big) + x_3 \big(y_1 - y_2 \big)\bigg] \\  \\  \sf \: area \:  of \:  triangle =  \\  \sf \:  \dfrac{1}{2}     \bigg[2(0 - 6) + 6(6 - 0) + 4(0 - 0)\bigg]  \\  \\\sf \: area \:  of \:  triangle =  \dfrac{1}{2} \bigg[2 \times ( - 6) + 6 \times 6 + 4 \times 0  \bigg]   \\  \\ \sf  \implies \:  \dfrac{1}{2} ( - 12 + 36 + 0) \\  \\ \sf  \implies \:  \dfrac{1}{2} \times 24 \\  \\  \sf  \implies \:  \dfrac{1}{\cancel2} \times \cancel{ 24} \\  \\ \sf \: area \:  of \:  triangle = \: 12 \:  {unit}^{2}

thus, area of triangle is 12 unit ² .

Similar questions