Math, asked by dsmohanreddy, 10 months ago

The area of the triangle formed by the vertices (a 1/a), (b, 1/b) and (c, 1/ c) is

Answers

Answered by tennetiraj86
7

Answer:

answer for the given problem is given

Attachments:
Answered by mysticd
5

 Let \: A(a,\frac{1}{a}) = ( x_{1} , y_{1}) ,

 B(b,\frac{1}{b}) = ( x_{2} , y_{2}) \:and

 C(c,\frac{1}{c}) = ( x_{3} , y_{3}) \:are \: vertices

 of \:a \: triangle .

 Area \: of \: the \: triangle

 = \frac{1}{2}|x_{1}(y_{2} -y_{3}) + x_{2}(y_{3} -y_{1}) + </p><p>x_{3}(y_{1} -y_{2}) |

 = \frac{1}{2}| a\Big(\frac{1}{b}-\frac{1}{c}\Big)+b\Big(\frac{1}{c}-\frac{1}{a}\Big)+c\Big(\frac{1}{a}-\frac{1}{b}\Big)|

 = \frac{1}{2}| a\Big(\frac{c-b}{bc}\Big)+ b\Big(\frac{a-c}{ac}\Big) + c\Big( \frac{b-a}{ab}\Big) |

 = \frac{1}{2}| \frac{ac-ab}{bc} + \frac{ab-bc}{ac}+ \frac{bc-ac}{ab} |

 = \frac{1}{2}| \frac{a(ac-ab)+b(ab-bc)+c(bc-ac)}{abc}|

 = \frac{1}{2}| \frac{a^{2}c-a^{2}b+ab^{2}-b^{2}c+bc^{2}-ac^{2}}{abc}|

Therefore.,

 \red{Area \: of \: the \: triangle}

 \green { = \frac{1}{2}| \frac{a^{2}c-a^{2}b+ab^{2}-b^{2}c+bc^{2}-ac^{2}}{abc}| }

•••♪

Similar questions