Math, asked by riteshjadhav1819, 4 months ago

The area of the triangle with vertices (-1, 2), (2, 4), (0, 0) is​

Answers

Answered by Asterinn
7

We have to find out the area of the triangle with vertices (-1, 2), (2, 4), (0, 0) .

Now , we know that :-

 \rightarrow \tt Area  \: of  \: triangle = \sf{\dfrac{1}{2} \times \left|\begin{array}{c c c} \tt x_{1} & \tt y_{1} & \tt 1 \\ \tt x_{2} & \tt y_{2} & \tt 1 \\ \tt x_{3} & \tt y_{3} & \tt 1\end{array}\right|}

here value of :-

 \tt  x_1 =  - 1 \\ \\\tt x_2 = 2 \\  \\ \tt  x_3 =0

\tt  y_1 =  2 \\  \\\tt y_2 = 4 \\  \\ \tt  y_3 =0

Now put the above Values to find out the area of given triangle :-

\rightarrow \tt Area  \: of  \: triangle = \sf{\dfrac{1}{2} \times \left|\begin{array}{c c c} \tt  - {1} & \tt 2& \tt 1 \\ \tt{2} & \tt 4& \tt 1 \\ \tt 0 & \tt 0& \tt 1\end{array}\right|}

Now , expanding determinant from Column 1:-

\tt\rightarrow  Area  \: of  \: triangle = \sf{\dfrac{1}{2}} \times   \bigg|\bigg( - 1(4 - 0) - 2(2 - 0) + 0(2 - 4)\bigg)\bigg|

[We have to put mod because area of triangle cannot be zero.]

\tt\rightarrow  Area  \: of  \: triangle = \sf{\dfrac{1}{2}} \times  \bigg|\bigg( -4   - 4   + 0\bigg)\bigg|

\tt\rightarrow  Area  \: of  \: triangle = \sf{\dfrac{1}{2}}  \times 8 = 4 \: square \: unit

\tt\rightarrow  Area  \: of  \: triangle = 4 \: square \: unit

Answer :

area of the triangle with vertices (-1, 2), (2, 4), (0, 0) = 4 square unit

\tt \large\underline{ \red{Additional-Information}}

If three collinear points are given then :-

 \longrightarrow \sf{\dfrac{1}{2} \times \left|\begin{array}{c c c} \tt x_{1} & \tt y_{1} &\tt 1 \\ \tt x_{2} & \tt y_{2} & \tt 1 \\ \tt x_{3} & \tt y_{3} & \tt 1\end{array}\right|}=0

Attachments:
Similar questions