Math, asked by Adibarasool, 3 months ago

the area of trapezium is 180 cm^2 and its height is 15cm. if one of the parallel side is double of other, find the length of two parallel sides

Answers

Answered by sethrollins13
111

Given :

  • Area of Trapezium is 180 cm² .
  • Height of Trapezium is 15 cm .
  • One parallel side of trapezium is double of other .

To Find :

  • Length of two Parallel Sides .

Solution :

\longmapsto\tt{Let\:one\:Parallel\:Side\:be=x}

As Given that One parallel side of trapezium is double of other . So ,

\longmapsto\tt{Other\:Parallel\:Side=2x}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Trapezium=\dfrac{1}{2}\times{(Sum\:of\:parallel\:sides)}\times{h}}

Putting Values :

\longmapsto\tt{180=\dfrac{1}{2}\times{(x+2x)}\times{15}}

\longmapsto\tt{180\times{2}=(x+2x)\times{15}}

\longmapsto\tt{360=15x+30x}

\longmapsto\tt{360=45x}

\longmapsto\tt{x=\cancel\dfrac{360}{45}}

\longmapsto\tt\bf{x=8}

Value of x is 5 .

Therefore :

\longmapsto\tt{One\:parallel\:side=x}

\longmapsto\tt\bf{8\:cm}

\longmapsto\tt{Other\:parallel\:side=2(8)}

\longmapsto\tt\bf{16\:cm}

So , The Length of Two parallel sides are 8 cm and 16 cm .

Answered by Anonymous
32

Given

  • Area of a trapezium is 180cm².
  • Height = 15cm
  • One parallel side is double of the other parallel side.⠀

To find

  • Length of two parallel sides.⠀

Solution

  • Let the one parallel side be x, then the other parallel side be 2x.⠀

\setlength{\unitlength}{1.5cm}\begin{picture}\thicklines\qbezier(0,0)(0,0)(1,2.2)\qbezier(0,0)(0,0)(4,0)\qbezier(3,2.2)(4,0)(4,0)\qbezier(1.5,2.2)(0,2.2)(3,2.2)\put(0.8,2.4){$\bf A $}\put(3,2.4){$\bf D $}\put(-0.3,-0.3){$\bf B$}\put(4,-0.3){$\bf C$}\put(4.4,0){\vector(0,0){2.2}}\put( 4.4, 0){\vector(0,-1){0.1}}\put(4.6,1){$\bf 15\ cm$}\put(0, -0.5){\vector(1,0){4}}\put(0, -0.5){\vector( - 1, 0){0.1}}\put(1.7, - 0.9){$\bf 2x $}\put(0.8, 2.8){\vector(1,0){2.5}}\put(0.8, 2.8){\vector( - 1, 0){0.1}}\put(1.7, 3){$\bf x $}\end{picture}⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀Required Diagram

  • Using Formula

\large{\boxed{\boxed{\sf{Area_{(Trapezium)} = \dfrac{Sum\: of\: parallel\: lines}{2} \times height}}}}

\tt:\implies\: \: \: \: \: \: \: \: {Area = 180}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{x + 2x}{2} \times 15 = 180}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{3x}{2} = \dfrac{180}{15}}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{3x}{2} = 12}

\tt:\implies\: \: \: \: \: \: \: \: {3x = 24}

\tt:\implies\: \: \: \: \: \: \: \: {x = \dfrac{24}{3}}

\bf:\implies\: \: \: \: \: \: \: \: {x = 8}

  • We have, x = 8⠀⠀⠀⠀⠀

By putting the value of x

❍ First parallel side = x = 8cm

❍ Second parallel side = 2x = 16cm

━━━━━━━━━━━━━━━━━━━━━━


sethrollins13: Great ! :D
Similar questions