Math, asked by monarajput879, 6 months ago

the area of trapezium is 270cm² and the altitude is 9cm if one of the side is 6cm longer than the other . find the length of both parallel sides​

Answers

Answered by balabala66
2

Step-by-step explanation:

let the parallel sides be x, x+6

½×(x+x+7)×9=270

½(2x+7)=30

2x+7=60

x=23

sides=23,29

Answered by Anonymous
4

\bf  {\underline {\underline{✤QƲЄƧƬƖƠƝ}}}

The area of trapezium is 270cm² and the altitude is 9cm if one of the side is 6cm longer than the other. Find the length of both parallel sides.

\bf  {\underline {\underline{✤ ƛƝƧƜЄƦ}}}

Length of parallel sides are 27m and 33m.

\bf  {\underline {\underline{✤ ƓƖƔЄƝ}}}

  • Area of trapezium 270cm²
  • Altitude = 9cm

\bf  {\underline {\underline{✤ ƬƠ  \:  \:  ƇƛLƇƲLƛƬЄ}}}

  • Parallel sides of trapezium

\bf  {\underline {\underline{✤ ƑƠƦMƲLƛ  \:  \: ƬƠ  \: ƁЄ \:  \:  ƲƧЄƊ}}}

Area of trapezium =

 \bf\purple{ \frac{1}{2}  \times sum \: of \: ll \: sides \:  \times h}

\bf  {\underline {\underline{✤ SƠԼƲƬƖƠƝ}}}

Let one parallel side be x

then, other side will be = ( x + 6)

 \bf \: Area \:  of \:  trapezium ={ \frac{1}{2}  \times sum \: of \: ll \: sides \:  \times h}

 \bf \to 270 =  \frac{1}{2} (x + x + 6) \times 9

 \bf \to 270 =  \frac{1}{2} (2x + 6) \times 9

 \bf \to 270 \div 9 =  \frac{1}{2} (2x + 6)

 \bf \to 30 =  \frac{1}{2} (2x + 6)

 \bf \to 30 \times 2 = 2x + 6

 \bf \to 60 = 2x + 6

 \bf \to 60 - 6 = 2x

 \bf \to 54 = 2x

 \bf \to 54  \div 2 = x

 \bf \to x = 27m

(x + 6 ) = 27 + 6 = 33m

 \bf \pink{hope \: } \purple{it \: } \blue{helps \: } \red{uh..}

Similar questions