Math, asked by meenakshiheer66488, 16 days ago

The Area of trapezium of height 24.2 cm is 605 cm².one of the parrallel sides is 21 cm,find the other side.​

Answers

Answered by sethrollins13
78

Given :

  • Area of trapezium of height 24.2 cm is 605 cm².
  • Length of one parallel side is 21 cm .

To Find :

  • Length of other parallel side .

Solution :

\longmapsto\tt{Parallel\:Side=21\:cm\:and\:x\:cm}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Trapezium=\dfrac{1}{2}\times{(Sum\:of\:parallel\:sides)}\times{h}}

Putting Values :

\longmapsto\tt{605=\dfrac{1}{2}\times{(21+x)}\times{24.2}}

\longmapsto\tt{605\times{2}=508.2+24.2x}

\longmapsto\tt{1210-508.2=24.2\:x}

\longmapsto\tt{701.8=24.2\:x}

\longmapsto\tt{x=\dfrac{7018\times{\cancel{{10}}}}{242\times{{\cancel{10}}}}}

\longmapsto\tt{x=\cancel\dfrac{7018}{242}}

\longmapsto\tt\bf{x=29\:cm}

So , The length of other parallel side of Trapezium is 29 cm .

Answered by StarFighter
37

Answer:

Given :-

  • The area of a trapezium of height is 24.2 cm and is 605 cm².
  • One of the parallel sides is 21 cm.

To Find :-

  • What is the other side of a trapezium.

Formula Used :-

\clubsuit Area Of Trapezium Formula :

\footnotesize \bigstar \: \: \sf\boxed{\bold{\pink{Area_{(Trapezium)} =\: \dfrac{1}{2} \times (Sum\: of\: Parallel\:  Side) \times Height}}}\: \: \: \bigstar\\

Solution :-

Let,

\mapsto \bf Other\: Side_{(Trapezium)} =\: b\: cm\\

Given :

  • Area of Trapezium = 605 cm²
  • One Parallel Side of Trapezium = 21 cm
  • Height of Trapezium = 24.2 cm

According to the question by using the formula we get,

\footnotesize \implies \sf\bold{\blue{Area_{(Trapezium)} =\: \dfrac{1}{2} \times (Sum\: of\: Parallel\: Side) \times Height}}\\

\implies \bf Area_{(Trapezium)} =\: \dfrac{1}{2} \times (a + b) \times h\\

\implies \sf 605 =\: \dfrac{1}{2} \times (21 + b) \times 24.2\\

\implies \sf 605 \times \dfrac{2}{1} =\: (21 + b) \times 24.1\\

\implies \sf \dfrac{605 \times 2}{1} =\: (21 + b) \times 24.1\\

\implies \sf \dfrac{1210}{1} =\: (21 + b) \times 24.1\\

\implies \sf 1210 =\: (21 + b) \times 24.2\\

\implies \sf 1210 \times \dfrac{1}{24.2} =\: 21 + b\\

\implies \sf \dfrac{1210 \times 1}{24.2} =\: 21 + b\\

\implies \sf \dfrac{1210}{24.2} =\: 21 + b\\

\implies \sf 50 =\: 21 + b\\

\implies \sf 50 - 21 =\: b\\

\implies \sf 29 =\: b\\

\implies \sf\bold{\green{b =\: 29}}\\

Hence,

\dag Other Parallel Side Of Trapezium :

\dashrightarrow \sf Other\: Side_{(Trapezium)} =\: b\: cm\\

\dashrightarrow \sf\bold{\red{Other\: Side_{(Trapezium)} =\: 29\: cm}}\\

\small \sf\bold{\purple{\underline{\therefore\: The\: other\: parallel\: side\: of\: trapezium\: is\: 29\: cm\: .}}}\\

Similar questions