Math, asked by almaasbloch0, 4 months ago

The area of trapezium shaped field is 480 m2

, the distance between

two parallel sides is 15 m and one of the parallel side is 20 m. Find

the other parallel side.

Answers

Answered by SarcasticL0ve
42

\sf Given \begin{cases} & \sf{Area\:of\: trapezium\:shaped\:field = \bf{480\:m^2}}  \\ & \sf{One\: parallel\: side\:of\:field = \bf{20\:m}} \\ & \sf{Distance\:between\:two\: parallel\:sides = \bf{15\:m}}\end{cases}\\ \\

To find: Length of other parallel side?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

☯ Let the length of other parallel side of trapezium shaped field be x m.

⠀⠀⠀⠀

\setlength{\unitlength}{1.3cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(1,2.2)\qbezier(0,0)(0,0)(4,0)\qbezier(3,2.2)(4,0)(4,0)\qbezier(1.5,2.2)(0,2.2)(3,2.2)\put(0.8,2.4){$\bf A $}\put(3,2.4){$\bf D $}\put(-0.3,-0.3){$\bf B$}\put(4,-0.3){$\bf C$}\put(4.4,0){\vector(0,0){2.2}}\put( 4.4, 0){\vector(0,-1){0.1}}\put(4.6,1){$\bf 15\ m$}\put(0, -0.5){\vector(1,0){4}}\put(0, -0.5){\vector( - 1, 0){0.1}}\put(1.7, - 0.9){$\bf x\ m $}\put(0.8, 2.8){\vector(1,0){2.5}}\put(0.8, 2.8){\vector( - 1, 0){0.1}}\put(1.7, 3){$\bf 20\ m $}\end{picture}

⠀⠀⠀⠀

Now,

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

Area of trapezium is given by,

\star\;{\boxed{\sf{\pink{Area_{\;(trapezium)} = \dfrac{1}{2} \times (a + b) \times h}}}}\\ \\

where,

  • a and b are length of two parallel sides and h is distance between two parallel sides or height of trapezium.

⠀⠀⠀⠀

\dag\;{\underline{\frak{Now,\: Putting\:values\:in\;formula,}}}\\ \\

:\implies\sf \dfrac{1}{2} \times (20 + x) \times 15 = 480\\ \\ \\ :\implies\sf (20 + x) \times 15 = 480 \times 2\\ \\ \\ :\implies\sf (20 + x) \times 15 = 960\\ \\ \\ :\implies\sf (20 + x) = \cancel{\dfrac{960}{15}}\\ \\ \\ :\implies\sf (20 + x) = 64\\ \\ \\ :\implies\sf x = 64 - 20\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{x = 44\:m}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{The\: length\:of\:other\: parallel\:side\:is\: {\textsf{\textbf{44\:m}}}.}}}

Answered by Anonymous
31

Answer:

Given :-

  • Area of trapezium = 480 m²
  • Distance between the parallel sides = 15 m
  • One of the parallel sides = 20 m

To Find :-

Other parallel side

Solution :-

As we know that

 \bf \orange{Area \:  =  \frac{1}{2}  \times (a + b) \times h}

Diagram :-

\setlength{\unitlength}{1.3cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(1,2.2)\qbezier(0,0)(0,0)(4,0)\qbezier(3,2.2)(4,0)(4,0)\qbezier(1.5,2.2)(0,2.2)(3,2.2)\put(0.8,2.4){$\bf A $}\put(3,2.4){$\bf D $}\put(-0.3,-0.3){$\bf B$}\put(4,-0.3){$\bf C$}\put(4.4,0){\vector(0,0){2.2}}\put( 4.4, 0){\vector(0,-1){0.1}}\put(4.6,1){$\bf 15\ m$}\put(0, -0.5){\vector(1,0){4}}\put(0, -0.5){\vector( - 1, 0){0.1}}\put(1.7, - 0.9){$\bf x \m $}\put(0.8, 2.8){\vector(1,0){2.5}}\put(0.8, 2.8){\vector( - 1, 0){0.1}}\put(1.7, 3){$\bf 20\ m $}\end{picture}

Let the other parallel side be x

 \sf \implies \: 480 =  \dfrac{1}{2}  \times (20 + x) \times 15

 \sf \implies \: 480 \times 2 = 1 \times 15(20 + x)

 \sf \implies \: 960 = 15 \times 20 + x

 \sf \implies \:  \dfrac{960}{15}  = 20 + x

 \sf \implies \: 64 = 20 + x

 \sf \implies \: 64 - 20 = x

 \sf \implies \: 44 =  x

Therefore :-

The other parallel side of trapezium is 44 cm.

Similar questions