Math, asked by sunisekhar1998, 10 months ago

the
area of two similar triangles are 81cm2

. and 49 cm2

respectively.

If altitude of bigger triangle is 4.5 cm. Find the corresponding altitude

of smaller triangle.​

Answers

Answered by Anonymous
21

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

The area of two similar triangles are 81 cm² and 49 cm² respectively. If altitude of bigger triangle is 4.5 cm. Find the corresponding altitude of smaller triangle.

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{Given}}}}

  • Area of big triangle = 81 cm²
  • Area of small triangle = 49 cm²
  • Altitude of bigger triangle = 4.5 cm

\Large{\underline{\mathfrak{\bf{Find}}}}

  • Altitude of small triangle

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

Let, Altitude of small triangle = x cm

As we know that,

Area's of two similar triangle are in the ration of the squares of the corresponding altitudes .

\mapsto\small{\sf{\:\dfrac{Area\:of\:big\:triangle}{Area\:of\:small\:triangle}\:=\:\dfrac{square\:of\:Altitude\:of\:big\:triangle}{square\:of\:Altitude\:of\:small\:triangle}}}\\ \\ \mapsto\sf{\:\dfrac{81}{49}\:=\:\dfrac{4.5^2}{x^2}}\\ \\ \mapsto\sf{\:x^2\:=\:\dfrac{49\times 20.25}{81}}\\ \\ \mapsto\sf{\:x^2\:=\:\dfrac{992.25}{81}}\\ \\ \mapsto\sf{\:x^2\:=\:12.25}\\ \\ \mapsto\sf{\:x\:=\:\sqrt{12.25}}\\ \\ \mapsto\mathfrak{\bf{\:x\:=\:3.5}}

\Large{\underline{\mathfrak{\bf{Thus}}}}

  • Altitude of small triangle = 3.5 cm

\Large{\underline{\underline{\mathfrak{\bf{Answer\:Verification}}}}}

A/c to this,

\mapsto\small{\sf{\:\dfrac{Area\:of\:big\:triangle}{Area\:of\:small\:triangle}\:=\:\dfrac{square\:of\:Altitude\:of\:big\:triangle}{square\:of\:Altitude\:of\:small\:triangle}}} \\ \\ \mapsto\sf{\:\dfrac{81}{49}\:=\:\dfrac{4.5^2}{3.5^2}} \\ \\ \mapsto\sf{\:1.65\:=\:\dfrac{20.25}{12.25}} \\ \\ \mapsto\sf{\:1.65\:=\:1.65} \\ \\ \:\:\mathfrak{\bf{\:L.H.S.\:=\:R.H.S.}}

That's proved.

Answered by JanviMalhan
174

Given :

The area of big triangle = 81cm²

The area of small triangle = 49cm²

Altitude of bigger triangle = 4.5 cm

To Find :

The corresponding altitude of smaller triangle = ?

Solution :

Let altitude of smaller triangle be X cm.

 \sf \pink{ \frac{area \: of \: bigger \triangle}{area \: of \: smaller \triangle}  =  \frac{altitude \: of \: bigger \triangle}{altitude \: of \: smaller \triangle} } \\

  \implies\sf \frac{81}{49}  =  \frac{4. {5}^{2} }{ {x}^{2} }  \\ \\  \implies \sf{ {x}^{2}   = (20 \times 25 \times  \frac{49}{81} }) \\  \\  \sf \implies \:  {x}^{2} = 12.25 \\  \\  \sf \implies \: x =  \sqrt{12.25}   \\  \\  \sf \: x = 3.5 \: cm

 \bold{hence \: the \:corresponding \: altitude } \\  \bold{ \: of \: the \: smaller \: triangle \: is \:  {\boxed {\rm {\red {\underline {\underline{3.5 \: cm }}}}}}}

corres

Similar questions