English, asked by bnswainswain993, 11 months ago

the areas of three adjacent faces of a cuboid are x, y, z then the volume of the
cuboid is
(a) x ²7272
(b) xyz
(c) √xyz
(d) 3 xyz​

Answers

Answered by Cynefin
10

❋Question:

The areas of three adjacent faces of a cuboid are x, y, z then the volume of the cuboid is

(a) x ²7272

(b) xyz

(c) √xyz✅✅

(d) 3 xyz

❋Answer:

Provided a attachment, refer it.

↬ Let the area of base ( l×b) be x

⇢ \large{ \sf{ \red{ \:  \: l \times b = x...... \green{equation(1)}}}}

↬Let the area of lateral face( b×h) be y

 ⇢ \large{ \sf{ \red{b \times h = y........ \green{equation(2)}}}}

↬Let the area of face (h×l) be z

 ⇢ \large{ \sf{ \red{h \times l = z......... \green{equation(3)}}}}

Multiplying all the equations we got,

⇢ \large{ \sf{ \:  \: (l \times b )  \times  (b\times h) \times (h \times l) = xyz}} \\  \\ ⇢ \large{ \sf{  \:  \: {l}^{2}  \times  {b}^{2}  \times  {h}^{2}  = xyz \: ..... \green{equation(4)}}}

↬We know, Volume of a cuboid = lbh

So, from equation(4),

 ⇢ \large{ \sf{ {l}^{2}  \times  {b}^{2} \times  {h}^{2}   = xyz}} \\  \sf{ \underline{ \underline{ \dag{ \pink{ \: squaring \: both \: sides}}}}} \\  \\ ⇢ \large{ \sf{ \sqrt{ {l}^{2} \times  {b}^{2} \times  {h}^{2}    }   =  \sqrt{xyz} }} \\  \\ ⇢ \large{ \boxed{ \sf{ \green{lbh =  \sqrt{xyz} }}}}

Required Answer is root xyź.

So final answer:

 \huge{ \boxed{ \bold{ \red{option \: d \:   -  \:   \sqrt{xyz} }}}}

Attachments:
Similar questions