English, asked by avscc, 3 months ago

The areas of two sectors of two different circles with equal corresponding arc lengths are equal. Is this statement true? If no, give reasons in support of your answer​

Answers

Answered by rana7381
0

Answer:

Given:

The radius of the circle C  

1

​  

=r  

1

​  

 and  

The radius of the circle C  

2

​  

=r  

2

​  

.

The length l  

1

​  

 of an arc of C  

1

​  

= The length l  

2

​  

 of an arc of C  

2

​  

.

The angle of the corresponding sector of C  

1

​  

=θ  

1

​  

 and

The angle of the corresponding sector of C  

2

​  

=θ  

2

​  

 

To find out:

The validity of the statement that the area of the corresponding sector of C  

1

​  

= The area of the corresponding sector of C  

2

​  

.

Solution:

We know that the length of the arc of a sector of angle θ=  

360  

o

 

θ

​  

×2πr, where r is the radius of the circle.

∴l  

1

​  

=  

360  

o

 

θ  

1

​  

 

​  

×2πr&l  

2

​  

=  

360  

o

 

θ  

2

​  

 

​  

×2π×2r.

Since l  

1

​  

=l  

2

​  

, we have  

360  

o

 

θ  

1

​  

 

​  

×2πr=  

360  

o

 

θ  

2

​  

 

​  

×2π×2r⇒θ  

1

​  

=2θ  

2

​  

   ....(i)

∴ Area of corresponding sector of C  

1

​  

=  

360  

o

 

θ  

1

​  

 

​  

×πr  

1

​  

 

2

=  

360  

o

 

2θ  

2

​  

 

​  

×πr  

1

​  

 

2

 (from i)    ....(ii)

and  

Area of corresponding sector of C  

2

​  

=  

360  

o

 

θ  

2

​  

 

​  

×πr  

2

​  

 

2

   ...(iii).

Comparing (ii) & (iii), we have

Area of corresponding sector of C  

2

​  

 

Area of corresponding sector ofC  

1

​  

 

​  

=  

360  

o

 

θ  

2

​  

 

​  

×πr  

2

​  

 

2

 

360  

o

 

2θ  

2

​  

 

​  

×πr  

1

​  

 

2

 

​  

=  

r  

2

​  

 

2

 

2r  

1

​  

 

2

 

​  

.

So, the areas will be equal if and only if 2r  

1

​  

 

2

=r  

2

​  

 

2

.

So, the given statement is not correct.

Attachments:
Similar questions