Math, asked by zaydan, 1 year ago

the areas of two squares are in the ratio to 225 : 256 what is the ratio of their perimeters

Answers

Answered by SraVanSai
10

Answer:    15:16

Step-by-step explanation:

Let the side of square 1 be "a"and the square 2 be ''b"

                                    Given  \frac{a^{2} }{b^{2}}=\frac{225}{256}

                          Square rooting on both sides

                                           \frac{a}{b}=\frac{15}{16}

   Perimeter of square is 4 times its side so the required ratio is 4a:4b

                           which is a:b = 15:16

Answered by Rishab143
2
Let the area of 1st and 2nd squares be
 {s1}^{2}  \:  \: and \:  \:  \:  \: {s2}^{2}  \:  \:  \:  \: then \\  \\  \frac{{s1}^{2}}{{s2}^{2}}  =  \frac{225}{256}  \\  \\  \\  \frac{s1}{s2}  =  \sqrt{ \frac{225}{256} }  \\  \\  \frac{s1}{s2}  =  \frac{15}{16}  \\  \\   \\ let \: the \: sides \: of \: the \: squares \: be \: s1 \: s2 \\ then \\  \\ ratio \: of \: perimeter \\  \\  =  \frac{4(s1)}{4(s2)}  =  \frac{4 \times 15}{4 \times 16}  \\  \\  =   \frac{60}{64 }  or \frac{15}{16}







thank you
Similar questions