Math, asked by varshith123, 1 year ago

The arithmetic mean of 1,2,3.......n is

Answers

Answered by AnswerStation
275
\boxed{\boxed{\mathsf{\frac{n + 1}{2}}}}
___________________________________

Let's take \mathsf{1,2,3........n} as an \textbf{A.P}

Here,
\mathsf{a = 1}
\mathsf{d = 1}
___________________________________

\underline{\textsf{Using the formula,}}

\mathbf{S_n = \frac{n}{2}(2a + (n-1)d)}
___________________________________

\underline{\textsf{Putting the values of a; d in the Formula,}}

=> \mathsf{\frac{n}{2}(2(1) + (n-1)1)}
=> \mathsf{\frac{n}{2}(2 + n - 1)}
=>\mathsf{\frac{n}{2}(n + 1)}
___________________________________

Now,

\mathbf{Mean = \frac{Sum \: of \: Terms}{Total \: Number \: of \: Terms}}
___________________________________

=> \mathsf{\frac{1 + 2 + 3.....a_n}{n}}

=> \mathsf{\frac{S_n}{n}}

Putting the Value of \mathsf{S_n} , we get

=> \mathsf{\frac{\frac{n}{2}(n + 1)}{n}}

=> \boxed{\mathsf{\frac{n + 1}{2}}}

Hence, the arithmetic mean of 1,2,3.....n is \mathbf{\frac{n + 1}{2}}
____________________________________
Answered by KaurSukhvir
0

Answer:

The arithmetic mean of 1,2,3.......n is equal to n(n+1)/2.

Step-by-step explanation:

Arithmetic mean is equal to sum of the given numbers divided by the total count of numbers in the data.

           Arithmetic mean  ==\frac{x_{1} +x_{2} +x_{3} .......+x_{n} }{n}

Now  for the collection of numbers 1,2,3.......n:

             Arithmetic mean   =\frac{n(n+1)}{2}

Similar questions