Math, asked by baap45, 4 months ago

The average marks obtained by 5 students in a group is 226. If the marks obtained by
four of them 180, 281, 279, 200. Find the marks obtained by the 5th student.

Answers

Answered by CɛƖɛxtríα
75

Given:

  • The average marks obtained by 5 students is 226.
  • The marks obtained by four of them are 180, 281, 279 and 200.

To find:

  • The marks obtained by the 5th student.

Formula used:

  • \sf{Average=\dfrac{Sum\:of\:terms}{No.of.terms}}

Solution:

The average marks of 5 students is given and the marks of 4 students are given. We need to calculate the marks of the 5th student.

Let the marks of the 5th student be \rm{z}.

\longmapsto{\sf{Average=\dfrac{Sum\:of\:terms}{No.of.terms}}}

  • Here, the number of terms is 5, as there are 5 students.

On substituting the values,

\\  \longmapsto\sf Average =  \dfrac{Sum \: of \: terms}{Number \: of \: terms} \\ \\  \\  \longmapsto{\sf{226=\dfrac{180+281+279+200+z}{5}}} \\   \\   \sf \longmapsto{226 = \dfrac{461   + 479 + z}{5}} \\   \\ \sf  \longmapsto 226=  \dfrac{940 + z}{ 5} \\  \\   \longmapsto \sf 226 \times 5 = 940 + z \\  \\  \longmapsto \sf 1130 = 940 + z \\  \\  \longmapsto \sf 1130 - 940 = z \\  \\  \longmapsto  { \boxed{\frak{ \red{190}}}}  \:  \sf  = z

\:

Verification:

Substituting 190 in place of z in the formula:

\\  \longmapsto\sf Average =  \dfrac{Sum \: of \: terms}{Number \: of \: terms} \\ \\  \\  \longmapsto{\sf{226=\dfrac{180+281+279+200+190}{5}}} \\   \\   \sf \longmapsto{226 = \dfrac{461   + 479 + 190}{5}} \\   \\ \sf  \longmapsto 226=  \dfrac{940 + 190}{ 5} \\  \\   \longmapsto \sf 226 =  \dfrac{ \cancel{1130}}{ \cancel{5}} \\  \\ \longmapsto \sf 226 = 226 \\  \\  \longmapsto \sf L.H.S. = R.H.S.

\\ \therefore\underline{\sf{The\: marks\:obtained\:by\:the\:5^{th}\: student\:is\:\textsf{\textbf{\purple{190}}}\sf{.}}}

________________________________________

Similar questions