Math, asked by mansi312611, 11 months ago

The base of a triangular field is three times its
altitude .if the cost of watering the field
at Rs 96 per hectare is Rs 3600 find the measure
the base and height

Answers

Answered by dhanvisetia
14

Answer:Altitude=500m and base=1500m

Step-by-step explanation:

Let the Altitude be x then base be 3x

Area of triangular field=1/2×b×h

1/2×3x×x

(1 hectare=10,000 m) Area=3x^2/2×10,000

According to the question

3x^2/2×10,000×96=3600

x^2=3600×2×10,000/3×96

x^2=250000

x=500m

Please mark as brainliest!!

Answered by XxCynoSurexX
13

 \huge{ \purple{ \underline{ \boxed{ \mathfrak{{ \pmb{{Answer}}}}}}}}

 \small\sf \green{Let,  \: altitude \:  of \:  triangular \:  field \:  be \: x \: m}

 \sf \small \green{Therefore, the \:  base \:  of  \: triangular  \: field \:  will  \: be  \: 3x  \: m.}

 \small \tt \red{Area \:  of \:  triangular  \: field =  \frac{1}{2}  \times base \times height}

  •   \tt\small \red{ =  \frac{1}{2}  \times 3x \times x \:  {m}^{2} }
  •  \tt \small \red{ \frac{ {3}^{2} }{2 \times 10000}  \: hectare}

 \large \sf \green{According \:  to \:  question,}

 \small \tt \red{ \frac{ {3}^{2} }{2 \times 1000}  \times 96 = 3600}

 \tt \small \red{ {x}^{2}  =  \frac{3600 \times 2 \times 10000}{3 \times 96}  = 250000}

 \tt \small \red{x = 500m}

  • Therefore, Altitude of triangular field = 500 m .
  • and, Base of triangular field = 3×500 = 1500 m.
Similar questions