Math, asked by freefire136, 3 months ago

The base of an iso seceles triangle is 8cm
each of the equal side is 5 cm - Find the
arop of the triangle in heronce formula with explain ​

Answers

Answered by Yuseong
5

 \Large {\underline { \sf \orange{Appropriate \: Question :}}}

The base of an isosceles triangle is 8cm each of the equal side is 5 cm. Find the area of the triangle in heron's formula.

 \Large {\underline { \sf \orange{Explication \: of \: Steps :}}}

Given:

• Base of the isosceles triangle = 8 cm

• Equal sides = 5 cm

________________________________

To calculate :

• Area of the triangle using Heron's formula.

________________________________

Calculation :

We know that as per the Heron's formula,

Area of = s(s-a)(s-b)(s-c)

  • s = Semi-perimeter ⇒  \sf { \dfrac{a+b+c}{2}}

Calculating Semi-perimeter

→ Semi-perimeter =  \sf { \dfrac{a+b+c}{2}}

→ Semi-perimeter =  \sf { \dfrac{5+5+8}{2} \: cm}

→ Semi-perimeter =  \sf { \dfrac{18}{2} \: cm}

→ Semi-perimeter =  \sf { \dfrac{18}{2} \: cm}

→ Semi-perimeter = 9 cm

Now, calculating area :

★ Area of ∆ = √s(s-a)(s-b)(s-c)

→ Area of ∆ = √9(9-5)(9-5)(9-8) cm²

→ Area of ∆ = √(9 × 4 × 4 × 1) cm²

→ Area of ∆ = √(3 × 3 × 4 × 4) cm²

  • Making pairs and picking up a factor form each pair.

→ Area of ∆ = (3 × 4) cm²

Area of = 12 cm²

Therefore, area of the isosceles triangle is 12 cm².

________________________________

 \Large {\underline { \sf \orange{Know \: More!}}}

Important properties of triangle :

Angle sum property of a triangle :

  • Sum of interior angles of a triangle = 180°

Exterior angle property of a triangle :

  • Sum of two interior opposite angles = Exterior angle

Perimeter of triangle :

  • Sum of all sides

Area of triangle :

  • \sf { \dfrac{1}{2} \times Base \times Height }

Area of an equilateral triangle:

  • \sf { \dfrac{\sqrt{3}}{4} \times  {Side}^{2} }

Area of a triangle when its sides are given :

  •  \sf { \sqrt{s(s-a)(s-b)(s-c)} }

Where,

  • S= Semi-perimeter
  • Or  \sf {\dfrac{a+b+c}{2} }

Similar questions