Math, asked by Alizask4353, 1 year ago

The base of an isosceles triangle 24cm and its area is 192squar cm . Find its perimeter

Answers

Answered by Anonymous
7

\large{\underline{\bf{\purple{Given:-}}}}

  • ✦ Base of isosceles triangle ⠀⠀⠀⠀⠀= 24cm

  • ✦ Are of triangle = 192 cm²

\large{\underline{\bf{\purple{To\:Find:-}}}}

  • we need to find the perimeter of triangle.

\huge{\underline{\bf{\red{Solution:-}}}}

Let the side of triangle be a cm.

Then,

 \leadsto  \rm{\pink{\:area =  \frac{1}{4}b \sqrt{4 {a}^{2} -  {b}^{2}}}  } \: \:  \:  sq \: units \\  \\  \leadsto  \rm\: \frac{1}{4}  \times 24 \times  \sqrt{4 {a}^{2} - 576 } \:  \:   {cm}^{2}   \\  \\  \leadsto  \rm\:12 \times  \sqrt{ {a}^{2} - 144 } \:  \:  {cm}^{2} \\ \\ \\

  • ✦ But it is given that Area = 192cm²

⠀⠀

 \leadsto  \rm\:\: \therefore \:  \:  \:  \: 12 \times \sqrt{ {a}^{2}  - 144} = 192 \\  \\\leadsto  \rm\:    \sqrt{ {a}^{2} - 144 } =  { \cancel{\frac{192}{16}}} \\  \\\leadsto  \rm\:\: \sqrt{ {a}^{2} - 144 } = 16  \\  \\\leadsto  \rm\:\: {a}^{2}   - 144 =  {16}^{2} \\  \\  \leadsto  \rm\:\: {a}^{2}    - 144 = 256 \\  \\ \leadsto  \rm\:\: {a}^{2}  = 256  +  144 \\  \\ \leadsto  \rm\:\: {a}^{2}   =400 \\  \\ \leadsto  \rm\:\:a =  \sqrt{400}    \\  \\\leadsto  \rm\:\:a = 20\\\\\\

  • ✦ So perimeter of triangle

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀=(2a+b)cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀=(2 × 20 + 24)cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀= 64cm.

perimeter of triangle = 64cm.

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by TrickYwriTer
5

Step-by-step explanation:

Given -

  • Base of an isosceles triangle is 24 cm
  • Area = 192 cm²

To Find -

  • Perimeter of an isosceles triangle

As we know that :-

  • Area of isocelses triangle = 1/4×b×√4a²-b²

→ 192 = 1/4 × 24 × √4a² - (24)²

→ 192 = 6 × √4a² - 576

→ 32 = √4a² - 576

→ (32)² = 4a² - 576

→ 1024 + 576 = 4a²

→ 1600 = 4a²

→ a² = 400

→ a = √400

→ a = 20 cm

As we know that :-

Perimeter of isocelses triangle = (2a + b)

→ (2×20 + 24)

→ 40 + 24

→ 64 cm

Hence,

The perimeter of an isosceles triangle is 64 cm.

Similar questions