The base of an isosceles triangle is 120 cm and its area is 810 cm square. Find perimeter by herons formula
Answers
Answered by
10
Let p = semiperimeter
⇒ Perimeter = 2p
Find the equal length of the isosceles triangle:
let the equal side be x
Perimeter = side 1 + side 2 + side 3
2p = 120 + 2x
2x = 2p - 120
x = p - 60
Solve for p:
Area = √p(p - a)(p - b)( p - c)
810 = √p(p - 120)(p - x )(p - x)
810 = √p(p - 120)(p - x )²
810 = √p(p - 120)(p - (p - 60) )²
810 = √p(p - 120)(p - p + 60 )²
810 = √p(p - 120)(60)²
p(p - 120)(60)² = 810²
p(p - 120) = 182.25
p² - 120p - 182.25 = 0
4p² - 480p - 729 = 0
(2p - 243) (2p + 3) = 0
2p = 243 or 2p = -3
p = 243/2 or p = -3/2 (rejected, since perimeter cannot be negative)
p = 121.5 cm
Find the perimeter:
Perimeter = 2p
Perimeter = 2 x 121.5 = 243 cm
Answer: The perimeter is 243 cm
Similar questions