Math, asked by aryansharma1941, 1 year ago

the base of the isosceles triangle is 24 cm area is 192 cm. find the perimeter​

Answers

Answered by neerajmehta449p61pbp
1

Answer:

IVEN: ABC an isosceles triangle, AB=AC. So angle B = angle C. Base BC = 24cm,

TO FIND: The perimeter(AB + BC + AC) =?

CONSTRUCTION: AM perpendicular to BC.

Since triangle AMB is congruent to triangle AMC( by RHS congruence criterion)

So, M is the mid point of BC. So, BM = 12cm

Since area(triangle ABC) = 1/2 * BC * AM

Step-by-step explanation:

Answered by Anonymous
6

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

\textbf{\underline{Area\;of\;isosceles\;triangle}}

= 192 cm²

QR = 24 cm

\textbf{\underline{QT = TR = 12\;cm}}

{\boxed{\sf\:{Using\;Formula\;we\;have}}}

\textbf{\underline{Area\;of\;Triangle}}

\tt{\rightarrow\dfrac{1}{2}\times Base\times Height}

\tt{\rightarrow 192=\dfrac{1}{2}\times 24\times h}

192 = 12 × h

\tt{\rightarrow h=\dfrac{192}{12}}

h = 16 cm

{\boxed{\sf\:{Using\;Pythagoras\;theorem :-}}}

PQ² = QT² + PT²

PQ² = (16² + 12²)

PQ² = 256 + 144

PQ² = 400

PQ = √400

PQ = 20 cm

Therefore,

\textbf{\underline{Perimeter = PQ + QR + RP}}

= 20 + 24 + 20

= 44 + 20

= 64 cm

So,

\Large{\boxed{\sf\:{Perimeter\;of\;triangle = 64 cm}}}

Attachments:
Similar questions