Math, asked by avinashsamantaray257, 5 months ago

- The base-radius and height of a cylinder
are 5 cm and 10 cm respectively. Then.
TSA is:
(a) 150 pi r cm²
(b) 300 cm²
(c) 150 cm²
(d) 300 cm²​

Answers

Answered by Anonymous
5

\boxed{\huge{\bf{\star{Correct\:question \:-:}}}}

  • The base-radius and height of a cylinder are 5 cm and 10 cm respectively. Then , Find Total Surface Area.

AnswEr-:

  • \underline{\boxed{\star{\sf{\blue{  The\:option\:A\:or\:150\pi cm^{2} \:is\:Correct. }}}}}

  • \underline{\boxed{\star{\sf{\blue{  The\:option\:A\:or\:150\pi cm^{2} \:is\:Correct. }}}}}

EXPLANATION-:

  •  \frak{Given \:\: -:} \begin{cases} \sf{The\:base-radius\:of\:Cylinder \:\:is\:= \frak{5cm}} & \\\\ \sf{Height \:of\:Cylinder \:is \:=\:\frak{10cm}}\end{cases} \\\\

  •  \frak{To \:Find\: -:} \begin{cases} \sf{The\:Total \:Surface \:Area\:of\:Cylinder \:}\end{cases} \\\\

\dag{\sf{\large { Solution-:\:}}}

  • \underline{\boxed{\star{\sf{\blue{ Total\:Surface\:Area_{(Cylinder)}  \: = \: 2 \pi \times Radius( Height +Radius)}}}}}

  •  \frak{Here \:\: -:} \begin{cases} \sf{The\:base-radius\:of\:Cylinder \:\:is\:= \frak{5cm}} & \\\\ \sf{Height \:of\:Cylinder \:is \:=\:\frak{10cm}}& \\\\ \sf{\pi =\dfrac{22}{7}}\end{cases} \\\\

\dag{\sf{\large { Now-:\:}}}

  • \implies{\sf{\large { \:\:\: 2 \times \pi \times 5 \: (10+5)\: }}}

  • \implies{\sf{\large { \:\:\: 2 \times \pi  \times 5 \: (15)\: }}}

  • \implies{\sf{\large { \:\:\: 2 \times \pi \times 75\: }}}

  • \implies{\sf{\large { \:\:\: 2 \times 75 \times \pi \: (10+5)\: }}}

  • \implies{\sf{\large { \:\:\: 150 \times \pi cm^{2}}}}

  • \dag{\sf{\large { Or,\:}}}

  • \implies{\sf{\large { \:\:\: 150\pi cm^{2}  }}}

\dag{\sf{\large { Therefore-:\:}}}

  • \underline{\boxed{\star{\sf{\blue{ Total\:Surface\:Area_{(Cylinder)}  \: = \:150\pi cm^{2}  }}}}}

\dag{\sf{\large { Hence:\:}}}

  • \underline{\boxed{\star{\sf{\blue{ Total\:Surface\:Area_{(Cylinder)}  \: = \:150\pi cm^{2}  }}}}}

  • \underline{\boxed{\star{\sf{\blue{  The\:option\:A\:or\:150\pi cm^{2} \:is\:Correct. }}}}}

__________________♡____________________

Similar questions