Math, asked by jairocks2005, 5 months ago

The base radius and height of a right circular solid cone are 2 cm and 8 cm respectively. It is melted and recast into spheres of diameter 2 cm each. Find the number spheres formed?​

Answers

Answered by Ataraxia
39

Given :-

  • Base radius of the right circular solid cone = 2 cm
  • Height of the right circular solid cone = 8 cm
  • Diameter of the sphere = 2 cm

To Find :-

  • Number of spheres.

Solution :-

Let number of spheres be n.

Radius of the sphere = 2/2 = 1 cm

\bf Volume \ of \ right \ circular \ cone = \dfrac{1}{3} \pi r^2h

\longrightarrow \sf \dfrac{1}{3} \times \pi \times 2 \times 2 \times 8 \\\\\longrightarrow \sf \dfrac{1}{3} \times \pi \times 32\\\\\longrightarrow \dfrac{32}{3}\pi

\bf Volume \ of \  a \  sphere = \dfrac{4}{3} \pi r^3

\longrightarrow\sf \dfrac{4}{3} \times \pi \times 1\times 1 \times 1 \\\\\longrightarrow \dfrac{4}{3} \pi

According to the question :-

Volume of right circular cone = n × Volume of a sphere

\longrightarrow\sf \dfrac{32}{3}\pi = n \times \dfrac{4}{3} \pi \\\\\longrightarrow \dfrac{32}{3} = n \times \dfrac{4}{3} \\\\\longrightarrow n = \dfrac{32}{3} \times \dfrac{3}{4} \\\\\longrightarrow n = \dfrac{32}{4} \\\\\longrightarrow \bf n = 8

Number of spheres = 8

Similar questions