Math, asked by mohitbohra6426, 11 months ago

The bases of an isosceles triangle is 4/3 cm. the perimeter of the triangle is 4 2/15 cm. what is the length of eighter of the remaining equal sides?

Answers

Answered by Anonymous
21

\Large{\underline{\underline{\mathfrak{\bf{\orange{Question}}}}}}

The bases of an isosceles triangle is 4/3 cm. the perimeter of the triangle is 42/15 cm. what is the length of either of the remaining equal sides ?

\Large{\underline{\underline{\mathfrak{\bf{\orange{Solution}}}}}}

\Large{\underline{\mathfrak{\bf{\blue{Given}}}}}

  • The bases of an isosceles triangle is 4/3 cm.
  • the perimeter of the triangle is 42/15 cm

\Large{\underline{\mathfrak{\bf{\blue{Find}}}}}

  • Length of remaining equal sides

\Large{\underline{\underline{\mathfrak{\bf{\red{Explanation}}}}}}

Let,

:\mapsto\sf{\green{\:Base_{Isosceles\:triangle}\:=\:B}}\\ \\ :\mapsto\sf{\green{\:Equal\:side\:of\:isosceles\:triangle\:be\:=\:A}}

Here, In diagram,

Isosceles triangle PQR ,

  • PQ = RS , these are equal side
  • QR is the Base of this triangle

\large{\underline{\mathfrak{\bf{\blue{Formula}}}}}

\boxed{\underline{\sf{\orange{\:perimeter_{isosceles\:triangle}\:=\:(2A+B)}}}}

keep above all values ,

:\mapsto\sf{\:\dfrac{42}{15}\:=\:(2A+\dfrac{4}{3})} \\ \\ :\mapsto\sf{\:2A\:=\:\dfrac{42}{15}-\dfrac{4}{3}} \\ \\ :\mapsto\sf{\:2A\:=\:\dfrac{42-4\times5}{15}} \\ \\ :\mapsto\sf{\:2A\:=\:\dfrac{42-20}{15}} \\ \\ :\mapsto\sf{\:A\:=\:\dfrac{22}{15\times2}} \\ \\ :\mapsto\sf{\red{\:A\:=\:\dfrac{11}{15}\:cm}}

\Large{\underline{\mathfrak{\bf{\blue{Hence}}}}}

  • Value of equal side of isosceles triangle be = 11/15 cm

Or,

  • PQ = RS = 11/15 cm.

___________________

Attachments:
Answered by TheBrainlyGirL001
4

⠀⠀⠀⠀ ⠀ \red{\boxed{\sf{\blue{\:Given\:}}}} ⠀⠀

{\:The\:base\:of\:an\: isosceles\:triangle\:}\dfrac{4}{3}...

{\:The\:perimeter\:of\:an\: isosceles\:triangle\:}\dfrac{42}{15}...

⠀⠀⠀⠀ ⠀\red{\boxed{\sf{\blue{\:To\:find\:}}}} ⠀⠀

The length of either of the remaining equal sides...

⠀⠀⠀⠀⠀ \red{\boxed{\sf{\blue{\:Solution\:}}}} ⠀⠀

Let the equal sides be x...

Let the base be y...

Perimeter of a triangle = sum of all sides...

  • perimeter = AB + BC + CA

So...

perimeter = 2x + y

⠀⠀⠀⠀ ⠀ ⠀⠀ ⠀{\overbrace{\underbrace{\blue{AB\:=\:AC}}}}

  • \dfrac{42}{15} = ( 2x \:+\: \dfrac{4}{3})

  • \dfrac{42}{15}-\dfrac{4}{3} = 2x

  • ⠀⠀ \dfrac{42 - 20}{15} = 2x

  • ⠀⠀\dfrac{22}{15} = 2x

  • ⠀⠀\dfrac{22}{15} = 2x⠀⠀

  • ⠀ ⠀\dfrac{22}{15} = 2x⠀ ⠀⠀

  • ⠀⠀\dfrac{22}{15\:×\:2} = x⠀⠀

  • ⠀⠀\dfrac{22}{30} = x⠀⠀

  • ⠀ ⠀\dfrac{11}{15} = x⠀ ⠀⠀

⠀⠀⠀

AB = AC = x

Therefore, equal sides of isosceles triangle are...

--- \</strong><strong>p</strong><strong>i</strong><strong>n</strong><strong>k</strong><strong>{\boxed{\sf{\orange{\</strong><strong>d</strong><strong>f</strong><strong>r</strong><strong>a</strong><strong>c</strong><strong>{</strong><strong>1</strong><strong>1</strong><strong>}</strong><strong>{</strong><strong>1</strong><strong>5</strong><strong>}</strong><strong>\:</strong><strong>cm</strong><strong>}}}}

Attachments:
Similar questions