Math, asked by Rinakkr, 1 year ago

The bases of an isosceles triangle is 48cm and one of its equal sides is 30 cm. Find its area ​

Answers

Answered by dakshdesai017
0

Answer:

144 ✓21

Step-by-step explanation:

by paithagoraus theorem

Answered by Anonymous
22

Given

  • Base = 48 cm
  • Equal sides = 30 cm Each

Explanation

Firstly, We have all the sides of the isosceles triangle that are:

  • Base = 48cm
  • Equal sides 30 Each

We Know that:-

 \\ \maltese {\pmb{\boxed{\sf{ Area_{( \Delta )} = \dfrac{b}{4} \times \sqrt{ 4( Equal \ Side)^2- (Base)^2 } }}}} \\ \\ \\ \colon\implies{\sf{ Area_{( \Delta )} = \cancel{ \dfrac{48}{4} } \times \sqrt{ 4(30)^2- (48)^2 } }} \\ \\ \\ \colon\implies{\sf{ Area_{( \Delta )} = 12 \times \sqrt{ 4(900)- 2304 } }} \\ \\ \\ \colon\implies{\sf{ Area_{( \Delta )} = 12 \times \sqrt{ 3600 - 2304 } }} \\ \\ \\ \colon\implies{\sf{ Area_{( \Delta )} = 12 \times \sqrt{ 1296 } }} \\ \\ \\ \colon\implies{\sf{ Area_{( \Delta )} = 12 \times 36 }} \\ \\ \\ \colon\implies{\sf\gray{ Area_{( \Delta )} = 432 \ cm^2 }} \\

Hence,

  • The Area of the Isosceles triangle is 432 cm².
Similar questions