Math, asked by AlexDontmg, 5 months ago

The breadth of a cuboid is half it's length and it's height is 4cm. if the volume is 200cm², Find it's length and breadth.
Step by step!!​

Answers

Answered by Mysterioushine
40

Given :

  • Breadth of a cuboid is half it's length
  • Height of the cuboid = 4 cm
  • Volume of the cuboid = 200 cm²

To Find :

  • The length and breadth of the cuboid

Solution :

Let the length of the cuboid be x . Then it's breadth becomes "\sf{\dfrac{x}{2}}" {given condition}

Volume of a cuboid is given by ,

 \\  \star \: {\boxed{\purple{\sf{Volume_{(cuboid)} = length \times breadth \times height}}}} \\

Substituting the values we have in the formula ,

 \\  :  \implies \sf \: 200 = x \times  \frac{x}{2}  \times 4 \\  \\

 \\   : \implies \sf \: 200 = x \times x \times 2 \\  \\

 \\   : \implies \sf \: 200 = 2 {x}^{2}  \\  \\

 \\   : \implies \sf \:  {x}^{2}  =  \frac{200}{2 }  \\  \\

 \\   : \implies \sf \:  {x}^{2}  = 100 \\  \\

 \\   : \implies \sf \: x =  \sqrt{100}  \\  \\

 \\  :  \implies{\underline{\boxed{\blue {\mathfrak{x = 10}}}}} \:  \bigstar \\  \\

Then length and breadth of the cuboid are,

  • Length = x = 10 cm

  • Breadth = \sf{\dfrac{10}{2}} = 5 cm

Hence ,

  • The length and breadth of the givem cuboid are 10 cm and 5 cm

Glorious31: Awesome
Answered by BrainlyHero420
77

Answer:

Given :-

  • The breadth of a cuboid is half of its length and its height is 4 cm and also it's volume is 200 cm².

To Find :-

  • What is the length and breadth of the cuboid.

Formula Used :-

\boxed{\bold{\small{Volume\: of\: Cuboid\: =\: Length\: \times Breadth\: \times Height}}}

Solution :-

Let, the length of the cuboid be x.

And, the breadth will be half of its length, so the breadth will be \sf\dfrac{x}{2}.

Given :

  • Length = x cm
  • Breadth = \sf\dfrac{x}{2} cm
  • Height = 4 cm
  • Volume = 200 cm²

According to the question by using the formula we get,

\sf x \times \dfrac{x}{2} \times 4 =\: 200

\sf x \times \dfrac{x}{\cancel{2}} \times {\cancel{4}} =\: 200

\sf x \times x \times 2 =\: 200

\sf 2{x}^{2} =\: 200

\sf {x}^{2} =\: \dfrac{\cancel{200}}{\cancel{2}}

\sf {x}^{2} =\: 100

\sf x =\: \sqrt{100}

\sf\red{ x =\: 10\: cm}

Hence, the required length and breadth are,

Length = x = 10 cm

Breadth = \sf\dfrac{x}{2} =\: \dfrac{10}{2} = 5 cm

\therefore The length of cuboid is 10 cm and the breadth of cuboid is t cm .


Glorious31: Amazing
Similar questions