Math, asked by rashpal3205, 10 months ago

The breath of rectangle gardern is 2/3 of its length .if the perimeter is 40m , find the diamension.​

Answers

Answered by StarrySoul
71

Given :

• Breadth of the rectangular garden is \sf\dfrac{2}{3} of its length.

• Perimeter = 40 m

To Find :

• Dimensions of the garden

Solution :

Let the length of the garden be x then breadth = \sf\dfrac{2x}{3}

We know that,

 \bigstar \:  \boxed{ \sf \: Perimeter = 2(length + breadth)}

 \longrightarrow \sf \: 40 = 2(x +  \dfrac{2x}{3} )

 \longrightarrow \sf \: 40 = 2( \dfrac{3x + 2x}{3} )

 \longrightarrow \sf \: 40 = 2( \dfrac{5x}{3} )

 \longrightarrow \sf \: 40 = 2 \times \dfrac{5x}{3}

 \longrightarrow \sf \: 40 = \dfrac{10x}{3}

 \longrightarrow \sf \: 10x = 40 \times 3

 \longrightarrow \sf \: 10x =120

 \longrightarrow \sf \: x  =  \cancel \dfrac{120}{10}

 \longrightarrow \sf \red{ x  = 12 \: m}

Hence,

 \dag \:  \sf  \boxed{ \purple{ \sf \: Length \:  of \:  the \:  field  = 12 \: m}}

 \dag \:  \sf  \boxed{ \purple{ \sf \: Breadth\:  of \:  the \:  field  =  \frac{2(12)}{3} = 8 \: m }}

Verification :

 \bigstar \:  \boxed{ \sf \: Perimeter = 2(length + breadth)}

 \longrightarrow \sf \:40 =  2(12 + 8)

 \longrightarrow \sf \:40 =  24 + 16

 \longrightarrow \sf \:40 =40

Hence, Verified!

Answered by vikram991
104

\underline{\bold{\red{Given,}}}

  • The Breadth of  a rectangle is 2/3 of its length.
  • Perimeter of Rectangle = 40 m.

\underline{\bold{\red{To \ Find ,}}}

  • Dimension of Rectangle (Length and Breadth)

Solution :

\implies Suppose the length of Rectangle be a

Therefore, The Breadth of Rectangle be 2a/3.

\mapsto \underline{\sf{\pink{According \ to \ the \ Question :}}}

  • The Perimeter of Rectangle = 40 m.

Therefore,

\implies \underline{\boxed{\sf{Perimeter \ of \ Rectangle = 2(Length + Breadth)}}}

\implies \sf{2(a + \dfrac{2a}{3} )   = 40}

\implies \sf{\dfrac{3a + 2a}{3} = 40}

\implies \sf{2(\dfrac{5a}{3} ) = 40}

\implies \sf{\dfrac{10a}{3} = 40}

\implies \sf{10a = 40 \times 3}

\implies \sf{10a = 120}

\implies \sf{ a = \dfrac{120}{10}}

\implies \boxed{\sf{a = 12}}

Therefore, The Dimensions of Rectangle shape Garden :-

\boxed{\bold{\red{The \ Length \ of \ Rectangle = a = 12 \ m}}}

\boxed{\bold{\red{The \ Breadth \ of \ Rectangle = \dfrac{2a}{3} = \dfrac{2(12)}{3} = 8 \ m}}}

\rule{200}2

\huge{\bf{\underline{\pink{Verification :}}}}

  • First Condition : The Breadth of a rectangle is 2/3 of its length.

Now Check :

\implies \sf{\dfrac{2a}{3} = 8 \ m}

\implies \sf{\dfrac{2(12)}{3} = 8 \ m}

\implies \sf{\dfrac{24}{3} = 8 \ m}

\implies \boxed{\sf{8 \ m = 8 \ m}}

Therefore, First Condition Proved.

  • Second Condition : The Perimeter of Rectangle is 40 m

Now Check :

\implies \sf{Perimeter \ of \ Rectangle = 2(Length + Breadth)}

\implies \sf{40 = 2(12 + 8)}

\implies \sf{40 = 2(20)}

\implies \boxed{\sf{40 \ m = 40 \ m}}

Therefore, Second Condition Also Proved.

Similar questions