Math, asked by rajurorki78, 5 months ago

the breath of rectangular plot is 20 m less than it's length find the dimensions if it's perimeter is 120 m ​

Answers

Answered by Arceus02
0

Given:-

  • The breadth of a rectangular plot is 20 m less that its length
  • Perimeter = 120 m

\\

To find:-

  • The dimensions (length and breadth)

\\

Answer:-

❖ As it is given that, the breadth is 20 m less the length,

▪Let the length of the rectangular plot be x metres.

▪Then the breadth will be (x - 20) m

\\

❖ It is also given that, the plot is rectangular. We know that, for a rectangle,

\dag \underline{\boxed{\blue{\bf{ 2(l + b) = P}}}} where P is perimeter, l is length and b is breadth of the rectangle.

But it is given that, Perimeter = P = 120 m

\\

So, putting the values according to the question,

 \sf \: 2(l + b) = P

 \longrightarrow \sf 2\{x + (x - 20) \} = 120 \: m

 \longrightarrow \sf x + (x - 20) =  \dfrac{120}{2}  \: m

 \longrightarrow \sf 2x - 20=  60 \: m

 \longrightarrow \sf 2x =  60 + 20 \: m

 \longrightarrow \sf 2x =  80 \: m

 \longrightarrow \sf x =   \dfrac{80}{4}  \: m

 \longrightarrow \sf x = 40 \: m

\\

So,

  • Length = x = 40 metres
  • Breadth = x - 20 = (40 - 20) m = 20 metres

Similar questions