Math, asked by mntnarwal, 9 months ago

The centre of a circle is (2a, a -7). Find the values of a, if the circle passes through the point (11, -9) and has diameter 10 units.

Answers

Answered by agarwallas460
3

Answer:

Step-by-step explanation:

Let the centre of circle be O(2a, a-7) and the point on the circumference be A(11, -9).

Therefore, x= 2a, y= a-7

                  x'= 11, y'= -9

Since, diameter= 10 units.

Thus, radius= 10/2 = 5 units.

We know that,

A straight line drawn from the centre to any point on the circumference is the radius of the circle.

Thus, OA is a radius.

Also,

Distance between two points= \sqrt{(x-x')^{2} + (y-y')^{2} }

   =>               OA                =\sqrt{(2a-11)^{2}+(a+2)^{2}  }  [since, y-y'= (a-7)-(-9)=                                            

                                                                                          a-7+9= a+2]

      =>               5                   =\sqrt{(2a)^{2} -2*2a*11 + 11^{2} + a^{2} +2*a*2 + 2^{2}  }

By squaring on both sides, we get,

       =>             5^{2}                     =(\sqrt{(2a)^{2} -2*2a*11 + 11^{2} + a^{2} +2*a*2 + 2^{2}})^{2}

      =>             25                     = 4a^{2} -44a + 121 +a^{2} + 4a + 4

     =>             25                      = 5a^{2} - 40a +125

     =>             0                         = 5a^{2} - 40a +125 - 25

     =>        5a^{2} - 40a + 100        = 0

     =>       5(a^{2} - 8a + 20)          = 0

    =>         a^{2} - 8a + 20              = 0

    co-efficient of a^{2}= k = 1

    co-efficient of a= l = -8

                                m= 20

Therefore,

by quadratic formula,

         a =   \frac{-l-\sqrt{l^{2} - 4(k)(m)}}{2k} , \frac{-l+\sqrt{l^{2} - 4(k)(m)}}{2k}

  =>       a =  \frac{-(-8)-\sqrt{(-8)^{2} - 4(1)(20)}}{2(1)} , \frac{-(-8)+\sqrt{(-8)^{2} - 4(1)(20)}}{2(1)}

  =>      a = \frac{8-\sqrt{64 - 80}}{2} , \frac{8+\sqrt{64 - 80}}{2}

  =>      a = \frac{8-\sqrt{-16}}{2} , \frac{8+\sqrt{-16}}{2}

  =>      a = \frac{8-\sqrt{(-1)(16)}}{2} , \frac{8+\sqrt{(-1)(16)}}{2}

 =>       a = \frac{8-4\sqrt{(-1)}}{2} , \frac{8+4\sqrt{(-1)}}{2}

 =>       a = \frac{2(4-2\sqrt{(-1)})}{2} , \frac{2(4+2\sqrt{(-1)})}{2}

=>        a = 4-2\sqrt{(-1)} , 4+2\sqrt{(-1)}

Therefore, a= 4-2\sqrt{(-1)} , 4+2\sqrt{(-1)}

Similar questions