Math, asked by sanjay4114, 10 months ago

The centroid of triangle whose vertices are (2,3), (4,2) and (3,7) is​

Answers

Answered by zidan43
2

Answer:

The centroid of triangle whose vertices are(2,3) , (4,2) , (3,7) is.

(3,4)

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Centroid(G)=}(3,4)}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Coordinate \: of \: A = (2,3)} \\ \\ : \implies \text{Coordinate \: of \: B = (4,2)} \\ \\ : \implies \text{Coordinate \: of \: C = (3,7)} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Centroid(G) = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\ \circ \: \text{Centroid \: of \: triangle(G}) \\ \\ \circ \: \text{For \: x }= \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ \circ \: \text{For \: y} = \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\ \bold{For \: x}\\ : \implies x = \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ : \implies x = \frac{2+4 + 3}{3} \\ \\ : \implies x = \frac{9}{3} \\ \\ \green{: \implies x =3} \\ \\ \bold{For \: y}\\ : \implies y= \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ : \implies y= \frac{3+2+7}{3} \\ \\ : \implies y = \frac{12}{3} \\ \\ \green{: \implies y =4} \\ \\ \green{\therefore \text{Coordinate \: of \: centroid(G) = }(3,4)}

Similar questions