Math, asked by adityakumar87, 1 year ago

the circumference of the base of a cylinder is 132 cm and it's height is a 25 cm. the volume of cylinder is

Answers

Answered by Anu211003
6
Let the radius be r cm
2× 22÷7 × r = 132
= r = 132×7÷2×22
= 21 cm
Radius - 21 cm
Height = 25 cm
Volume = 22÷7×21×21×25 = 34650 cubic cm

Hope it helps u
Answered by silentlover45
11

\large\underline\pink{Given:-}

  • Circumference of the base of a cylinder is 132 cm.
  • And it's height 25cm.

\large\underline\pink{To find:-}

  • Fine the volume of the cylinder ....?

\large\underline\pink{Solutions:-}

  • Let the radius of a cylinder be r x.

Circumference of the base of a cylinder = 2πr.

\: \: \: \: \: \leadsto \: \: {2} \pi \: r \: \: = \: \: {132}

\: \: \: \: \: \leadsto \: \: {2} \times \: \frac{22}{7} \: \times \: {r} \: \: = \: \: {132}

\: \: \: \: \: \leadsto \: \: \frac{44}{7} \: \times \: {r} \: \: = \: \: {132}

\: \: \: \: \: \leadsto \: \: {r} \: \: = \: \: \frac{{7} \: \times \: \cancel{132}}{\cancel{44}}

\: \: \: \: \: \leadsto \: \: {r} \: \: = \: \: {7} \: \times \: {3}

\: \: \: \: \: \leadsto \: \: {r} \: \: = \: \: {21} \: cm.

Now, Volume of the Cylinder = πr²h

\: \: \: \: \:  \leadsto \: \: \frac{22}{7} \: \times \: {(21)}^{2} \: \times \: {25}

\: \: \: \: \:  \leadsto \: \: \frac{22}{\cancel{7}} \: \times \: \cancel{21} \: \times \: {21} \: \times \: {25}

\: \: \: \: \:  \leadsto \: \: {22} \: \times \: {3} \: \times \: {21} \: \times \: {25}

\: \: \: \: \:  \leadsto \: \: {66} \: \times \: {21} \: \times \: {25}

\: \: \: \: \:  \leadsto \: \: {34650} \: {cm}^{3}.

Hence, The volume of the cylinder is 34650 cm³.

\large\underline\pink{More \: Information:-}

  • Volume of cylinder ( Area of base × height ).

= (πr²) × h

= πr²h

  • Curved surface = ( Perimeter of base ) × height.

= (2πr) × h

= 2πrh

  • Total surface are = Area of circular ends + curved surface area.

= 2πr² + 2πrh

= 2πr(r + h)

  • Where, r = radius of the circular base of the cylinder.
  • h = height of cylinder.
Similar questions