Math, asked by rejudiya, 3 months ago

The circumference of two concentric rings are 88cm and 66cm respectively. Find the width between the rings.(Hint: find R and r)

Answers

Answered by aasimfeetwala
21

Answer:

3.5 cm

Step-by-step explanation:

C1 = 2πR

88 = 2 * 22/7 * R

R = 88 * 7 / 2 * 22

R = 14 cm

C2 = 2πr

66 = 2 * 22/7 * r

r = 66 * 7 / 22 * 2

r = 21/2

r = 10.5 cm

Width = R - r

= 14 - 10.5

= 3.5 cm

Hope it helps

Please mark as Brainliest

Answered by Anonymous
155

Question:

  • The circumference of two concentric rings are 88cm and 66cm respectively. Find the width between the rings.(Hint: find R and r)

Given that:

  • The circumference of two concentric rings are 88cm and 66cm respectively

Need to find :

  • Find the width between the rings.

Solution :

Let R and r be the radius of the given cocentric circle.

Circumference of the outer circle of the ring :

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \displaystyle{ \purple{ \sf{ 2 {\pi}R = 88}}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \displaystyle{ \sf{2 \times  \frac{22}{7}   \times  R = 88}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \displaystyle{ \sf{R =  \frac{88}{2 \times  \frac{22}{7} } }}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \displaystyle{ \sf{R =  \frac{88 \times 7} {2 \times 22}}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \displaystyle{ \sf{R =  \frac{ \cancel{88} \: \:   ^{ \cancel{44}  \:  \: ^{22} }   \times 7} { \cancel2 \times  \cancel{22} \:  \: ^{11} }}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \displaystyle{ \sf{R =  \frac{\cancel{22} \:  \: ^{2} \times 7} { \cancel{11}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \displaystyle{ \boxed{ \sf{R = 14 \: cm}}} \red \bigstar

Circumference of the inner circle of the ring :

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \displaystyle{ \green{ \sf{ 2 {\pi}r = 66}}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \displaystyle{ \sf{2 \times  \frac{22}{7}   \times  r = 66}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \displaystyle{ \sf{r =  \frac{66}{2 \times  \frac{22}{7} } }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \displaystyle{ \sf{r =  \frac{66 \times 7} {2 \times 22}}}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \displaystyle{ \sf{r = \frac{ \cancel{66} \: \: ^{ \cancel{33} \: \: ^{3} } \times 7} { 2 \times \cancel{22} \: \: ^{ \cancel{11}} }}}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \displaystyle{ \sf{r =  \frac{21}{2}}}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \displaystyle{ \boxed{ \sf{r = 10.5}}} \red \bigstar

So,

The width of ring = R - r

The width of ring = 14 - 10.5

The width of ring = 3.5 cm

Henceforth, the width of ring is 3.5 cm \red \bigstar

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions