Math, asked by almithun167, 2 months ago

The co-ordinates of the point P which divides the line joining the points (-14).(8,6) internally in the ratio 3:2 is​

Answers

Answered by SachinGupta01
10

\bf \underline{ \underline{\maltese\:Given} }

\sf \implies Coordinates \: of \: point \: A = (-1, 4)

\sf \implies Coordinates \: of \: point \: B = (8, 6)

\sf \implies Ratio \: in \: which \: P \: divides \: A \: and \: B \: is \: 3 : 2

\bf \underline{\underline{\maltese\: To \: find }}

\sf \implies Coordinates \: of \: point \:  P = \: ?

\bf \underline{\underline{\maltese\: Solution }}

\bf \underline{ Using\;section\;formula} :

 \underline{{\boxed{\sf{(x,y) = \bigg( \dfrac{m_2 x_1 + m_1 x_2}{m_1 + m_2}\;,\; \dfrac{m_2 y_1 + m_1 y_2}{m_1 + m_2} \bigg)}}}}

\bf \underline{Where},

\sf \implies m_1 = 3

\sf \implies m_2 = 2

\sf \implies x_1 =  - 1

\sf \implies x_2 = 8

\sf \implies y_1 = 4

\sf \implies y_2 = 6

 \sf \underline{Substituting \:  the  \: values},

 \sf{(x,y) = \bigg( \dfrac{m_2 x_1 + m_1 x_2}{m_1 + m_2}\;,\; \dfrac{m_2 y_1 + m_1 y_2}{m_1 + m_2} \bigg)}

 \bf \underline{Now},

 \sf{(x,y) = \bigg( \dfrac{2 \times   (- 1) + 3  \times 8}{3 + 2}\;,\; \dfrac{2  \times 4 + 3  \times 6}{3 + 2} \bigg)}

 \sf{(x,y) = \bigg( \dfrac{ - 2 + 24}{5}\;,\; \dfrac{8 + 18}{5} \bigg)}

 \sf{(x,y) = \bigg( \dfrac{22}{5}\;,\; \dfrac{26}{5} \bigg)}

\underline{\boxed{\bf \red{Hence , the \: required \: coordinates \: of \: the \: point \: are \bigg( \dfrac{ 22}{5} \:,\: \dfrac{26}{5}\bigg)}}}

Answered by BrainlyWizzard
22

Given" :-

  • Coordinates of point A = (-1, 4)

  • Coordinates of point B = (8, 6)

  • Ratio in which P divides A and B is 3 : 2

To find" :-

  • Coordinates of point P = ?

Solution" :-

 \:  \:  \:  \:   \maltese \: \sf \underline\red{Formula \: used \: by : }

 \rm \underline{(x,y) = \bigg( \dfrac{m_2 x_1 + m_1 x_2}{m_1 + m_2}\;,\; \dfrac{m_2 y_1 + m_1 y_2}{m_1 + m_2} \bigg)}

Where as ,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf  \red{: \: \longmapsto} m_1 = 3 \\  \\  \sf \purple{: \: \longmapsto} m_2 = 2  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf  \red{: \: \longmapsto} x_1 = - 1 \\  \\ \sf \purple{: \: \longmapsto} x_2 = 8 \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \red{: \: \longmapsto} y_1 = 4 \\  \\ \sf \purple{: \: \longmapsto} y_2 = 6

Substituting the values,

\rm{(x,y) = \bigg( \dfrac{m_2 x_1 + m_1 x_2}{m_1 + m_2}\;,\;\dfrac{m_2 y_1 + m_1 y_2}{m_1 + m_2} \bigg)} \\ \\

And Next,

 \:  \:  \:  \:  \:  \:  \:  \:  \:   \pink{: \implies}\rm{(x,y) = \bigg( \dfrac{2 \times (- 1) + 3 \times 8}{3 + 2}\;,\; \dfrac{2 \times 4 + 3 \times 6}{3 + 2} \bigg)}  \\  \\   \pink{: \implies}\rm(x,y)=( 3+22×(−1)+3×8,3+22×4+3×6)

 \maltese\rm{(x,y) = \bigg( \dfrac{ - 2 + 24}{5}\;,\; \dfrac{8 + 18}{5} \bigg)} \\  \\   \maltese \:\rm(x,y)=( 5−2+24, 58+18)

  \purple\longmapsto\rm{(x,y) = \bigg( \dfrac{22}{5}\;,\; \dfrac{26}{5} \bigg)} \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \purple \longmapsto\rm(x,y)=( 522, 526)

 \:  \:  \:  \:  \:  \: ❍ \: {\underline{\sf\purple{Hence , the \: required \: coordinates \: of \: the \: point \: are \bigg( \dfrac{ 22}{5} \:,\: \dfrac{26}{5}\bigg)}}}

Similar questions