The coefficient of x and the constant term in a linear polynomial are 5 and -3 respectively. Find it’s zeros
Answers
We need to find the zeroes of a linear equation whose coefficient of x and constant terms are 5 and -3 respectively.
Linear equation:
An equation is said to be a linear equation if the degree of the equation is one. It is a relation between constant and a variable, when graphed always gives a straight line. It is represented by the form ax+b=0.
ax+b=0
In this a is the coefficient of x and b is a constant term.
Given, 5 is the coefficient of x and -3 is the constant term.
Substituting these values in ax+b=0
We get,
We need to find the roots of this equation,
By the following way we can find the roots.
Hence, when we put the value of x i.e, 0.6 in the equation the equation gets satisfied.
Therefore, a linear equation has only one root and the root of the given equation is
#SPJ2
just like that .....
snemjdnejsismwmmskskskks