Math, asked by daiwik39, 8 months ago

The combined equation of three sides of a triangle is
(x2 - y2) (2x + 3y – 6) = 0 . If (-2, a) is the
interior point of the triangle then the integral value of a
is​

Answers

Answered by SIMnaN35
0

Step-by-step explanation:

The combined equation of three sides of a triangle is (x

2

−y

2

)(2x+3y−6)=0. If (−2,a) is an interior point and (b,1) is an exterior point of the triangle, then

THIS QUESTION HAS MULTIPLE CORRECT OPTIONS

Share

Study later

ANSWER

(x

2

−y

2

)(2x+3y−6)=0

(x−y)(x+y)(2x+3y−6)=0

Therefore the lines are

y=x

y=−x

2x+3y−6=0

Since (−2,a) is an interior point

−4+3a−6<0

3a<10

a<

3

10

...(i)

and x+y>0

−2+a>0

a>2 ...(ii)

From i and ii we get 2<a<

3

10

For b consider equations y=x andy=−x

b+1>0

b>−1

and b−1<0

b<1

Therefore −1<b<1

Similar questions