Math, asked by romi4792, 1 year ago

The complete integral of the partial differential equation z = px + qy + p2q is

Answers

Answered by ansab2
0
Changes made to your input should not affect the solution:

 (1): "p2"   was replaced by   "p^2". 

Unauthorized use of the imaginary unit "i" or syntax error in complex arithmetic expression

........... V completeintegralofpartialdifferentialz=px+qy+p^2qis
The symbol "i" is only allowed in complex arithmetic, for example:
     (3/5+7i)+(0.3-7.002i) 
     (5+77i)-(19/4-8i) 
     (240-22i)*(247/7+2.222i) 
     (33/5+99i)/(33/5-88i) 

Unauthorized use of the imaginary unit "i" or syntax error in complex arithmetic expression

......................... V completeintegralofpartialdifferentialz=px+qy+p^2qis

Unauthorized use of the imaginary unit "i" or syntax error in complex arithmetic expression

............................. V completeintegralofpartialdifferentialz=px+qy+p^2qis

Unauthorized use of the imaginary unit "i" or syntax error in complex arithmetic expression

..................................... V completeintegralofpartialdifferentialz=px+qy+p^2qis

Unauthorized use of the imaginary unit "i" or syntax error in complex arithmetic expression

.................................................... V completeintegralofpartialdifferentialz=px+qy+p^2qis

Too Many Variables

.................... V c*o*m*p*l*e*t*e*i*n*t*e*g*r*a*l*o*f*p*a*r*t*i*a*l*d*i*f*f*e*r*e*n*t*i*a*l*z=p*x+q*y+p^2*q*i*s

Too Many Variables

.................................................................................... V c*o*m*p*l*e*t*e*i*n*t*e*g*r*a*l*o*f*p*a*r*t*i*a*l*d*i*f*f*e*r*e*n*t*i*a*l*z=p*x+q*y+p^2*q*i*s Program Execution Terminated
Similar questions