Physics, asked by angellife1223, 1 year ago

The component of vector 2i-3j+2k perpendicular to i+j+k is​

Attachments:

Answers

Answered by sprao534
13

please see the attachment

Attachments:

angellife1223: I didn't get the 2nd last step
angellife1223: Can u expalin me
angellife1223: Got it
sprao534: A.B=a1a2+b1b2+c1c2=2*1+(-3)*1+2**1=1.and|B|=v(1^2+1^2+1^2)=V3. Therefore|B|^2=3
sprao534: thank you
Answered by pinquancaro
14

Answer:

Option 1 - C=\frac{5}{3}(i-2j+k)

Explanation:

To find : The components of a \vec{a}=2i-3j+2k perpendicular to \vec{b}=i+j+k

Solution :

The formula to find component of vector a perpendicular to vector b is given by,

C=\vec{a}-\frac{\vec{a}\cdot \vec{b}}{|\vec{b}|^2}\times \vec{b}

We know, \vec{a}=2i-3j+2k and \vec{b}=i+j+k

|\vec{b}|=\sqrt{1^2+1^2+1^2}

|\vec{b}|=\sqrt{3}

|\vec{b}|^2=3

\vec{a}\cdot \vec{b}=2(1)-3(1)+2(1)

\vec{a}\cdot \vec{b}=4-3=1

Substitute the value in the formula,

C=2i-3j+2k-\frac{1}{3}\times (i+j+k)

C=\frac{6i-9j+6k-i-j-k}{3}

C=\frac{5i-10j+5k}{3}

C=\frac{5}{3}(i-2j+k)

Therefore, Option 1 - is correct.

The component of vector a perpendicular to vector b is C=\frac{5}{3}(i-2j+k)

Similar questions