Math, asked by kaustav7012, 1 year ago

The compound interest on a certain sum of money at 16 2/3 % after 2 years is rs 585. find the simple interst on the same sum of money at the same rate after 3 years

Answers

Answered by anshikajain0401
0
hope the answer is correct
Attachments:
Answered by mysticd
0

 Let \: the \:sum(Principal ) = P

 Rate \:of \: interest (R) = 16\frac{2}{3}\% \\= \frac{50}{3}\%\: p.a

 Time (T) = 2 \: years

 Conversion \:period (n) = 2

i ) Compound \: interest (c.i) = Rs \:585\:(given)

 \implies \pink {P[ \Big( 1 + \frac{R}{100} \Big)^{2} - 1] = 585}

 \implies P[\Big( 1 + \frac{\frac{50}{3}}{100}\Big)^{2} - 1] = 585

 \implies P[\Big( 1 + \frac{1}{6}\Big)^{2} - 1] = 585

 \implies P[\Big(\frac{ 6 + 1}{6}\Big)^{2} - 1] = 585

 \implies P[\Big(\frac{7}{6}\Big)^{2} - 1] = 585

 \implies P\Big(\frac{49}{36} - 1\Big)= 585

 \implies P\Big(\frac{49-36}{36} \Big)= 585

 \implies P\Big(\frac{13}{36} \Big)= 585

 \implies P = 585 \times \frac{36}{13}

 \implies P = 45 \times 36

 \implies P = Rs \: 1620\: --(1)

 ii ) Now, Sum  (P) = Rs \:1620

 Rate \:of \: interest (R) = 16\frac{2}{3}\% \\= \frac{50}{3}\%\: p.a

 Time (T) = 3 \: years

 \boxed { \pink { Simple \: interest = \frac{PTR}{100} }}

 \implies S.I = \frac{ 1620 \times3 \times  \frac{50}{3}}{100} \\= \frac{ 1620 \times 50}{ 100} \\= 162 \times 5 \\= Rs \:810

Therefore.,

 \red { Required \:sum }\green {= Rs \:1620}

 \red {S.I }\green {= Rs \: 810 }

•••♪

Similar questions