Math, asked by bharathi2001, 4 months ago


The coordinates of a moving particle are given by x = 4 -t²/2
and y =3+6t-t3/6

Find the velocity and Acceleration of the particle at t=2
sec.​

Answers

Answered by Asterinn
8

position of moving particle can be written as :-

 \rm \large \vec{r} = \bigg(4 -  \dfrac{ {t}^{2} }{2}  \bigg)\hat{i} +  \bigg(3 + 6t -  \dfrac{ {t}^{3} }{6}  \bigg) \hat{j} \\  \\

Now, velocity = dr/dt

\rm \rightarrow \large \dfrac{d\vec{r}}{dx}   = \bigg(0 -  \dfrac{2 {t} \ }{2}  \bigg)\hat{i} +  \bigg(0+ 6 -  \dfrac{ 3{t}^{2} }{6}  \bigg) \hat{j} \\  \\  \\  \rm\rightarrow \large \dfrac{d\vec{r}}{dx}   = \bigg( -  \dfrac{ {t} \ }{1}  \bigg)\hat{i} +  \bigg(6 -  \dfrac{ {t}^{2} }{2}  \bigg) \hat{j} \\  \\ \\    \rm \: put \: t = 2 \\  \\  \\ \rm\rightarrow \large v   = \bigg( -  {2 }{}  \bigg)\hat{i} +  \bigg(6 -  \dfrac{ {2}^{2} }{2}  \bigg) \hat{j}\\  \\  \\ \rm\rightarrow \large v   = \bigg( -  {2 }{}  \bigg)\hat{i} +  \bigg(6 - 2 \bigg) \hat{j}\\  \\  \\ \rm\rightarrow \large v   = \bigg( -  {2 }{}  \bigg)\hat{i} +  \bigg(4\bigg) \hat{j}\\  \\  \\ \rm\rightarrow \large v   =  \sqrt{ {( - 2)}^{2} +  {(4)}^{2}  } \\  \\  \\ \rm\rightarrow \large v   =  \sqrt{ 4+  16  } \\  \\  \\ \rm\rightarrow \large v   =  \sqrt{ 20  }

Now, acceleration = dv/dt

\rm\rightarrow \large \dfrac{d\vec{v}}{dx}   = \bigg(  - 1 \bigg)\hat{i} +  \bigg(0-  \dfrac{ 2{t}^{} }{2}  \bigg) \hat{j}  \\  \\  \\ \rm\rightarrow \large \dfrac{d\vec{v}}{dx}   = \bigg(  - 1 \bigg)\hat{i} +  \bigg(-  \dfrac{ {t}^{} }{1}  \bigg) \hat{j}  \\  \\   \\  \rm \: put \: \:  t = 2 \\  \\ \\ \rm\rightarrow \large \dfrac{d\vec{v}}{dx}   = \bigg(  - 1 \bigg)\hat{i} +  \bigg(- { {2}^{} }\bigg) \hat{j}   \\  \\  \\  \rm \: a =  \sqrt{ {( - 1)}^{2}  +  {( - 2)}^{2} }   \\  \\  \rm \: a =  \sqrt{ 1  + 4}   \\  \\  \rm \: a =  \sqrt{ 5}

Similar questions