Math, asked by arti3169, 11 months ago

The coordinates of a point are (a sin alpha ,a cos alpha) .Find the distance from origin.​

Answers

Answered by gothwalshubham95
6

Answer:

Distance = a

Use the distance formula.

Attachments:
Answered by Rohit18Bhadauria
12

Answer:

a

Step-by-step explanation:

✯✯Given✯✯

A point with coordinate(asinα,acosα).

To Find:

    Distance of given point from origin(0,0).

Formulae to be known before solving question

  • If two points having coordinate (\sf\bold{x_{1} ,y_{1} }) and (\sf\bold{x_{2} ,y_{2} }) are given then distance between these points are given by

        \sf {Distance\:formula=\sqrt{(x_{2}-x_{1} ) ^{2}+(y_{2}-y_{1} ) ^{2} }}

  • \sf{sin^{2} x+cos^{2}x=1}

Solution:

  \sf{Distance\:between\: origin\: and\: given\: point}

    =\sqrt{(asin\alpha-0) ^{2}+(acos\alpha-0 ) ^{2} }

    \sf=\sqrt{(asin\alpha)^{2}+(acos\alpha)^{2}  }

    \sf=\sqrt{a^{2}sin^{2}\alpha+a^{2}cos^{2}\alpha^{2}  }

    \sf=\sqrt{a^{2}(sin^{2}\alpha+cos^{2}\alpha)  }

    \sf=\sqrt{a^{2}(1)  }  

    \sf=\sqrt{a^{2}  }

    \sf\red{=a }

\sf\bold{Hence, distance\:between\:origin\:and\:given\:point\:is\:'a'.}

Similar questions