Math, asked by albazkhan02, 14 hours ago

the coordinates of the centre of centroid of the triangle whose vertices are (0,6) (8,12) (8,0)​

Answers

Answered by user0888
5

\rm\large\underline{\text{Theorem}}

The centroid of the circle is \textrm{G$(\dfrac{x_1+x_2+x_3}{3},\dfrac{y_1+y_2+y_3}{3})$}, provided that three vertices of triangles are (x_i,y_i)(i=1,2,3).

\rm\large\underline{\text{Solution}}

Let the three vertices be \textrm{A(0,6), B(8,12), C(8,0)}.

And let the centroid of the circle be \textrm{G$(x,y)$}.

We know that,

\cdots\longrightarrow\textrm{G$(\dfrac{0+8+8}{3},\dfrac{6+12+0}{3})$}

\cdots\longrightarrow\textrm{G$(\dfrac{16}{3},6)$}

The centroid of the triangle is \rm G(\dfrac{16}{3},6).

\rm\large\underline{\text{Proof}}

(Assertion)

The three medians of a triangle divide each other internally in the ratio 2:1.

(Result)

Consider the midpoint (\dfrac{x_1+x_2}{2}) which is the midpoint of (x_1,y_1) and (x_2,y_2).

Two points (x_3,y_3) and (\dfrac{x_1+x_2}{2}) divide each other in the ratio of 2:1.

By internal section formula,

\cdots\longrightarrow\text{G$(\dfrac{2\times\dfrac{x_1+x_2}{2}+x_3}{2+1}$, $\dfrac{2\times\dfrac{y_1+y_2}{2}+y_3}{2+1})$}

\cdots\longrightarrow\text{G$(\dfrac{x_1+x_2+x_3}{3}$, $\dfrac{y_1+y_2+y_3}{3})$}

Hence proven.

Similar questions