The coordinates of the centroid of a triangle are (√3,2), and two of its vertices are (2√3,-1) and (2√3,5). Find the third vertex of the triangle.
Answers
Answer:
GIVEN: Equilateral triangle ABC , A(x,y),
B(3,4), C(-2,3)
TO FIND: Coordinates of A, x & y
By distance formula, we calculate AB, BC & AC. Then we equate them to get x & y.
Distance between 2 points
= √[( x1-x2)² + ( y1-y2)²], where( x1, y1) &( x2,y2) are coordinates of 2 given points
So, in the given triangle ABC,
BC= √(5²+1²) = √26 ………….(1)
AB = √[(x-3)² +(y-4)²] …………(2)
AC = √[(x+2)² +(y-3)² …………..(3)
Let's equate (1) & (3) AC = BC => AC² =BC²
(x+2)² + (y-3)² =26
=> x² +4x +4 + y² -6y +9 = 26
Now, we equate(2) & (3) AB = AC => AB² = AC²
=> (x-3)² +(y-4)² = (x+2)² +(y-3)²
=> x² + 9 - 6x + y² + 16 -8y = x² +4 + 4x + y² +9-6y
=> 10x +2y -12 =0
=> 5x + y -6 =0
=> 5x +y = 6
=> y = 6–5x ……………..(5)
Now, put the value of y in equation (4)
we get, x² + (6–5x)² + 4x -6( 6–5x) -13 =0
=> x² +36 +25x² - 60x +4x -36+30x -13 =0
=> 26x² -26x -13 = 0
=> 2x² - 2x -1 =0
= x = (2 +,- √12)/4 ( by quadratic formula)
= > x = (2+,- 2√3)/4
=> x = (1+ ,- √3)/2 ……………..(6)
Now, get Y by eq (5)
y = 6 - 5{( 1+, - √3)/2}
y= 6 - ( 5+,-5√3 )/2
= y= (7 +,- 5√3)/2 …………..(7)
Now, after verifying we get the coordinates of the third vertex A
If x= (1+√3)/2 then y= (7–5√3)/2 ……….ANS★
&if x = (1-√3)/2 then y = (7+5√3)/2………..ANS★