Math, asked by yuvan200537, 1 month ago

The coordinates of the point P which divides the line joining the points (-1,-4) (8,6) internally in the ratio 3:2 is
(a) 22/5, 2
(b) 13/3,4
(c) 12/5,3
(d) 25/3,7​

Answers

Answered by ImperialGladiator
5

Answer:

 \rm \: (a) \:  \dfrac{22}{5}  \: ,2

Explanation:

Given points,

  • \rm (x_1 \:\&\: y_1) =(-1, -4)
  • \rm (x_2 \:\&\: y_2) = (8, 6)

Where, point P divides them in the ratio\rm (m_1 \:\&\: m_2) 3 : 2.

By section formula,

{ =  \rm \bigg \{ \dfrac{m_1x_2 + m_2x_1}{ m_1 + m_2}  ,\:  \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \bigg\}}

On substituting the values,

{ =  \rm \bigg \{ \dfrac{3(8) + 2( - 1)}{ 3 + 2}  ,\:  \dfrac{3(6) + 2( - 4)}{3 + 2} \bigg\}}

{ =  \rm \bigg \{ \dfrac{24  - 2}{ 5}  ,\:  \dfrac{18  -  8}{5} \bigg\}}

{ =  \rm \bigg \{ \dfrac{22}{ 5}  ,\:  \dfrac{10}{5} \bigg\}}

{ =  \rm \bigg \{ \dfrac{22}{ 5}  ,\:  2 \bigg\}}

Required answer : \rm \dfrac{22}{5},\: 2

Similar questions