Math, asked by pavanpavan66113, 5 months ago

The cost of 7 2/3 meter of cloth is 12 3/4. Find the cost of permeter

Answers

Answered by Anonymous
1

Answer:

ForSphere

\rm Radius \: (r) = 4.2 \: cmRadius(r)=4.2cm

\therefore \sf Volume \: of \: sphere = \frac{4}{3}\pi r {}^{2} ∴Volumeofsphere=

3

4

πr

2

\: \: \: \: \: \: \sf = \frac{4}{3}\pi (4.2) {}^{3} \: cm {}^{3} =

3

4

π(4.2)

3

cm

3

\bf {For \: Cylinder}ForCylinder

\rm Radius(R) = 6 \: cmRadius(R)=6cm

\sf{Let \: the \: height \: of \: the \: cylinder \: be \: H \: cm.}LettheheightofthecylinderbeHcm.

\rm Then, \: Then,

\sf{Volume \: of \: Cylinder = \pi r {}^{2} H = \pi(6) {}^{2} H \: cm {}^{3} }VolumeofCylinder=πr

2

H=π(6)

2

Hcm

3

\rm According \: to \: the \: Question,AccordingtotheQuestion,

\sf{Volume \: of \: the \: metallic \: sphere \: must \: be}Volumeofthemetallicspheremustbe

\rm = Volume \: of \: the \: cylinder=Volumeofthecylinder

\implies \: \: \: \: \sf\frac{4}{3} \: \pi(4.2) {}^{3} = \pi(6) {}^{2} h⟹

3

4

π(4.2)

3

=π(6)

2

h

\rm Dividing \: both \: sides \: by \: \pi \: and \: cross \: multiplying,Dividingbothsidesbyπandcrossmultiplying,

\: \: \: \: \: \: \: \: \sf{3(6) {}^{2} H = 4(4.2) {}^{3} }3(6)

2

H=4(4.2)

3

\begin{gathered} \implies \: \: \: \: \: \: \sf{ H = \frac{4(4.2) {}^{3}} {3(6) {}^{2}}} \\ \end{gathered}

⟹H=

3(6)

2

4(4.2)

3

\begin{gathered} \implies \: \: \rm H = \frac{4 \times 4.2 \times 4.2 \times 4.2}{3 \times 6 \times 6} \\ \end{gathered}

⟹H=

3×6×6

4×4.2×4.2×4.2

\: \: \: \: \: \: \: \sf = 4 \times 1.4 \times 0.7 \times 0.7=4×1.4×0.7×0.7

\begin{gathered} \: \: \: \: \: \: \: \: \: \rm = 4 \times \frac{14}{10} \times \frac{7}{10} \times \frac{7}{10} \\ \end{gathered}

=4×

10

14

×

10

7

×

10

7

\begin{gathered} \: \: \: \: \: \: \sf = \frac{56 \times 49}{1000} = \frac{2744}{1000} \\ \end{gathered}

=

1000

56×49

=

1000

2744

\implies \rm \: \: \: \: \: \: \: \: H = 2.744⟹H=2.744

\begin{gathered} \sf Hence, \: the \: height \: of \: the \: cylinder \: is \: 2.744 \\ \: \sf \:cm.\end{gathered}

Hence,theheightofthecylinderis2.744

cm.

Similar questions