Math, asked by ayannaskar3640, 2 months ago

The cost of a refrigerator is 9000. Its value depreciates at the rate of 5% every year.
Find the total depreciation in its value at the end of 2 years.

Answers

Answered by SachinGupta01
12

\bf \underline{ \underline{\maltese\:Given} }

 \sf \Rrightarrow The \:  cost \:  of \:  the \:  refrigerator  \:  (Principal) = Rs.  \: 9000

 \sf \Rrightarrow Rate  \: of \:  the  \: value  \: depreciated = 5  \: \%

 \sf \Rrightarrow Time   \: of  \: depreciation = 2 \:  years

\bf \underline{ \underline{\maltese\:To  \: find } }

 \sf \Rrightarrow Total \:  depreciation \:  after \:  2 \:  years = \:  ?

\bf \underline{ \underline{\maltese\:Solution  } }

  \underline{\boxed{\sf Amount\:Depreciated = P \bigg(1-\dfrac{R}{100}\bigg)^{n}}}

 \sf Substitute \:  the  \: values,

  \sf  \implies  9000 \bigg(1-\dfrac{5}{100}\bigg)^{2}

  \sf  \implies  9000 \bigg(1-\dfrac{1}{20}\bigg)^{2}

  \sf  \implies  9000 \bigg(\dfrac{20 - 1}{20}\bigg)^{2}

  \sf  \implies  9000 \bigg(\dfrac{19}{20}\bigg)^{2}

  \sf  \implies   \cancel{9000}  \times \dfrac{361}{ \cancel{400}}

  \sf  \implies   {45}  \times \dfrac{361} {2}

  \sf  \implies  \dfrac{16245}{2}

  \sf  \implies  8122.5

 \sf  After  \: 3  \: years \:  it's \:  depreciation \:  amount = Rs. \:  8122.5

 \bf \underline{Now},

 \sf \implies Depreciation = Principal  - Amount

 \sf \implies Depreciation = 9000  - 8122.5

 \sf \implies Depreciation = 877.5

 \bf \underline{Therefore},

 \sf \implies  \underline{\boxed{  \sf Total \:  depreciation\:after\: 2\:years =Rs.  \: 877.5}}

Similar questions