Math, asked by ElaineAndEthan, 3 months ago

the cost of painting the total surface area of a cone at 25 paise per cm² is rupees 176. Find the volume of the cone, if its slant height is 25 cm​

Answers

Answered by MizzCornetto
46

ǫᴜᴇsᴛɪᴏɴ-:

the cost of painting the total surface area of a cone at 25 paise per cm² is rupees 176. Find the volume of the cone, if its slant height is 25 cm

sᴏʟᴜᴛɪᴏɴ-:

T.S.A. = \sf\frac{176}{0.25} = \sf\frac{176×100}{25} = \sf{70cm^2}

T.S.A. = \sf{r~π}(r + l)

\sf{70r} = \sf\frac{22}{7} × r (r + \sf{25})

\sf{224} = \sf{r^2} + \sf{25r}

\green\implies\sf{r^2} + \sf{25r} - \sf{224} = \sf{0}

\green\implies\sf{r^2} + \sf{32} - \sf{7r} - \sf{224} = \sf{0}

\green\implies\sf{r(r+32)} - \sf{7(r+32)} = \sf{0}

\green\implies\sf{(r7)(v+32)} = \sf{0}

Hence,\sf{r~=~7cm}

ᴠᴏʟᴜᴍᴇ-:

V = \sf\frac{1}{3}\sf{πr^2~b}

= \sf\frac{1}{3}\sf\frac{22}{7}\sf{×7×7×24}

V = \sf{1232cm^3}

ʙᴇ ʙʀᴀɪɴʟʏツ

Answered by ⲎσⲣⲉⲚⲉⲭⳙⲊ
518

Answer:

Step-by-step explanation:

Total surface area of right circular cone = 704cm²

Slant height (l) = 25cm

Radius of the cone (r) = ?

Total surface area of cone = πrl + πr²

⇢ πrl + πr² = 704

⇢ πr ( l + r ) = 704

⇢ r ( l + r) = \dfrac{704}{\pi}

⇢ r ( 25 + r) = 704 \times \dfrac{7}{22}

⇢ 25r + r² = 224

⇢ r² + 25r - 224 = 0

⇢ r² + 32r - 7r - 224 = 0

⇢ r( r + 32) - 7( r + 32) = 0

⇢ ( r - 7) ( r + 32) = 0

⇢ r - 7 = 0 (or) r + 32 = 0

⇢ r = 7 (or) r = -32

Since, radius cannot be negative

Radius of the cone (r) = 7cm

Height (h) = \sqrt{l^{2} - {r}^{2}}

\rm \dashrightarrow h = \sqrt{ 25^{2} - 7^{2}}

\rm \dashrightarrow h = \sqrt{ 625 - 49 }

\rm \dashrightarrow h = \sqrt{576}

\rm \dashrightarrow h = 24cm

Now, Volume of the cone = \rm \dfrac{1}{3} \pi r^{2} h

= \rm \dfrac{1}{3} \times \dfrac{22}{7} \times 7^{2} \times 24

= \rm  \dfrac{22}{7} \ times 7 \times 7 \times 8

= 22 × 7 × 8

= 1232

\underline{\boxed{\rm \therefore Volume \: of \: the \: cone = 1232cm^{3}}}

Similar questions