The cost of painting total outside surface of a closed cylindrical box at Rs 10 cm' is Rs 1540
The height of the tank is equal to its radius. Find the volume of cylindrical tank.
Answers
Answer:
The volume of cylindrical tank is 134.75 cm³.
Step-by-step explanation:
Given: Total cost of painting = Rs 1540 , Rate of painting = Rs 10 per cm and height is equal to the radius of the tank.
If radius of the tank is r cm and its height is h cm, then h = r.
w.k.t., total outside surface area of cylinder is 2πr(r+h) and volume of cylinder is πr²h.
⇒ Total surface area of cylinder = 2πr(r+h) = 2πr(r+r) = 4πr²
⇒ Total cost of painting = (total surface area of cylinder) × (rate of painting)
⇒ 1540 = 4πr² × 10
⇒ r² = 1540 / 40π
⇒ r² = (77 × 7) / (2 × 22)
⇒ r² = 49/4
⇒ r = 7/2 = 3.5 cm
⇒ h = r = 3.5 cm
So, volume of cylinder = πr²h = (22 × 3.5 × 3.5 × 3.5) / 7
⇒ Volume of cylinder = 134.75 cm³
Let r dm be the radius of the base and h dm be the height of the cylindrical tank.
Then, h=6r (given)
Total surfacea area =2πr(r+h)=2πr(r+6r)=14πr2
cost of painting =Rs.(14πr2)×10060=Rs542r2
It is given that the cost of painting is Rs. 237.60
∴542πr2=237.60⇒542×722×r2=237.60
⇒r2=237.60×425×227=9⇒r=3dm
∴h=6r=18dm
Hence, volume of the cylinder =πr2h=(π×3×3×18)dm3=(722×9×18)dm3=